
Guiding SAT Diagnosis with TreeDecompositionsPer Bjesse, James Kukula, Robert Damiano, Ted Stanion, and Yunshan ZhuAdvanced Technology Group, Synopsys Inc.Abstract. A tree decomposition of a hypergraph is a construction thatcaptures the graph's topological structure. Every tree decomposition hasan associated tree width, which can be viewed as a measure of how tree-like the original hypergraph is. Tree decomposition has proven to be avery useful theoretical vehicle for generating polynomial algorithms forsubclasses of problems whose general solution is NP-complete. As a rule,this is done by designing the algorithms so that their runtime is boundedby some polynomial times a function of the tree width of a tree decompo-sition of the original problem. Problem instances that have bounded treewidth can thus be solved by the resulting algorithms in polynomial time.A variety of methods are known for deciding satis�ability of Booleanformulas whose hypergraph representations have tree decompositions ofsmall width. However, satis�ability methods based on tree decompositionhas yet to make an large impact. In this paper, we report on our e�ortto learn whether the theoretical applicability of tree decomposition toSAT can be made to work in practice. We discuss how we generate treedecompositions, and how we make use of them to guide variable selec-tion and conict clause generation. We also present experimental resultsdemonstrating that the method we propose can decrease the number ofnecessary decisions by one or more orders of magnitude.1 IntroductionTree decomposition [6] is a graph theoretic concept which abstractly capturestopological structure in a variety of problems [4] such as constraint satisfac-tion [12], Gaussian elimination [21], database query processing [9], and imagecomputation [13].The topological structure of a Conjunctive Normal Form (CNF) formula canbe represented as a hypergraph, where the vertices of the hypergraph correspondto the variables of the CNF and the hyperedges correspond to the clauses. Givena small treewidth tree decomposition for a hypergraph of a CNF formula, avariety of methods are known for deciding its satis�ability [12, 10, 3].In this paper we report on our e�ort to learn whether satis�ability solvingguided by tree decomposition can be made to work in practice. To do this, weattempt to �nd tree decompositions of small treewidth for signi�cant problems,and to incorporate methods based on tree decomposition into a state-of-the-artSAT solver.



The end result of the work presented in this paper is a satis�ability checkingmethod that given a bounded width tree decomposition of a problem instancewill be guaranteed to run in quadratic time. We present the methods we usefor generating tree decompositions and show how we make use of the tree de-composition to guide diagnosis and conict clause generation. We also presentexperimental results that demonstrate that there are real-life SAT instances withsmall tree width, where our tree-sat method decreases the number of necessarydecisions by one or more orders of magnitude.2 PreliminariesIn the remainder of this paper, we will focus on augmenting GRASP-like [16]implementations of the Davis-Putnam-Loveland-Logemann (DPLL) method [11]with tree decomposition guidance. We refer readers unfamiliar with decision, de-duction, and diagnosis components of such algorithms, including conict graphsand backjumping, to [23].3 Tree DecompositionGiven a hypergraph G = (V;E), where V is a set of vertices and E a set ofhyperedges with e � V for each e 2 E, a tree decomposition of G is a triple(N;F; �) where1. N is a set of nodes,2. F � N �N is a set of arcs such that (N;F ) forms an unrooted tree,3. � : N ! 2V associates a subset of vertices with each tree node,4. for every hyperedge e 2 E, there is some node n 2 N such that e � �(n),5. for every n1; n2; n3 2 N , if n2 lies on the path in (N;F ) between n1 and n3,then �(n1)\�(n3) � �(n2). This means that, for each vertex v 2 V , the setof nodes that contain v form a subtree of (N;F ).Informally, this means that a tree decomposition of a CNF formula will bean unrooted tree, whose nodes contain subsets of the variables in the formula.This tree needs to ful�ll the two properties that (1) the set of variables in eachclause in the CNF needs to be a subset of some node, and (2) the set of nodesthat contain a variable v from the original CNF must form a subtree of the treedecomposition.The treewidth of a tree decomposition is maxn2N j�(n)j�1. The treewidth ofa hypergraph is the smallest treewidth of any of its possible tree decompositions.Figure 1 shows an example of a CNF formula and an associated tree decom-position of treewidth 3.4 Tree Decomposition and DPLL-SATWe will now relate each of the core algorithmic components of modern DPLL-based SAT solvers|decision, deduction, and diagnosis|to tree decomposition.
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( 2 -3  5) Fig. 1. A CNF formula and its tree decompositionFirst, we show that a tree decomposition of a CNF formula will necessarilyinclude paths corresponding to all possible chains of deduction resulting fromassigning one or more variables. Next, we describe a set of conditions under whichall chains from decision variables to an unsatis�ed clause will pass through somecommon tree node, so that a legitimate conict clause can be constructed fromthe variables in that node. Finally, we outline constraints on decision variableselection that insure these conditions are met.Before we proceed further, however, we would like to note that a SAT proce-dure that restricts itself to constructing conict clauses contained in tree nodeswill be polynomial in the problem size for any class of problems with treewidthbounded by w. To see this, we can think of a SAT procedure as a series of conictclause constructions. The number of conict clauses constructed will be limitedto O(n3w), where n is the size of the CNF formula, since any tree decompositioncan be trivially reduced to have O(n) nodes and each node with w variablescan only generate 3w clauses. When the i'th conict clause is constructed, theCNF formula will have grown to size O(n + i) from the addition of the priorconict clauses. The time required to build the i'th conict clause is linear inthis size, since a chain of implications could propagate through a large fractionof the clauses. Thus the total SAT procedure will be bounded byn3wXi=0(n+ i) = O(n29w)There exists SAT algorithms for bounded treewidth problems that are linearrather than quadratic in the problem size [12]. However, these algorithms donot make use of the strength of DPLL solvers and as far as we know, none ofthese algorithms have managed to scale in practice. As our goal is to exploretechniques that are e�ective for typical industrial problem instances, and DPLLsolvers have proved to be very competitive in this context, our focus in this paperwill thus be on modifying a DPLL solver to generate bounded conict clauseseven though the resulting complexity is superlinear.4.1 Tree Decomposition and DeductionLet us start by showing that for each chain of implications resulting from avariable assignment, there is a corresponding path in the tree decomposition.



The construction of DPLL solvers guarantees that every variable with animplied value is given that value because of some antecedent clause. Moreover,at the time of implication every variable in the clause except the implied variablemust have been given some value, either through decision or through implication.Let us consider an arbitrary chain of implications v0; v1; : : : ; vk, where v0 is adecision variable, vi was given an implied value before vj whenever 0 < i < j,and for each i < k, vi appears in the antecedent ci+1 of vi+1.Lemma 1. For any chain of implications there is path in the tree decompositionn0; n1; : : : ; nl together with a mapping p : [0::l]! [0::k], satisfying{ Either ni = ni+1, or ni and ni+1 are adjacent in the tree decomposition.{ vp(i) 2 �(ni){ p(0) = 0{ p(l) = k{ If p(i) = j, then either p(i+ 1) = j or p(i+ 1) = j + 1.{ If p(i) 6= p(i+ 1), then ni = ni+1.This node sequence is built up from paths in the tree between nodes contain-ing successive antecedent clauses. To see this, focus on some particular subse-quence vi; vi+1, i > 0, together with the antecedents ci of vi and ci+1 of vi+1. Byrule 4 of tree decomposition, clause ci must be contained by some tree node nci ,and similarly clause ci+1 must be contained by some nci+1 Variable vi must be inclause ci since ci is the antecedent of vi, and so vi must be in node nci . Variablevi must also be in clause ci+1 since vi; vi+1 is part of an implication chain, so vimust also be in node nci+1 . Since variable v+ i is in both nodes nci and nci+1 , byrule 5 of tree decomposition it must be in every tree node on the path betweenthem. In this way we can build up the complete path in the tree decompositionby appending the paths joining each pair of successive antecendent clauses ciand ci+1.As an example, consider the CNF formula in Figure 1. Assume that thevariables v1 and v2 in the implication chain 7; 2; 8 has the antecendent clausesc1 = (�2 4 7) and c2 = (1 2 8). The following is then a path and mappingcorresponding to the chain: i 0 1 2 3 4 5ni F F E D A Ap(i) 0 1 1 1 1 2vp(i) 7 2 2 2 2 84.2 Tree Decomposition and DiagnosisNext we de�ne a set of conditions under which a conict clause can be con-structed from variables within a single tree node.De�nition 1. Given a CNF formula, a tree decomposition of it, and a partialassignment composed of decision and deduction assignments, a core subtree NCis a nonempty maximal subtree that satis�es:
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Fig. 2. Core and adjacent nodes{ For each decision variable v in the partial assignment, some node in NC orsome node adjacent to NC contains v.{ Every variable in every node of NC is assigned.De�nition 2. Given a non-conicting partial assignment, a further decisionassignment is admissible relative to a tree decomposition if the decision vari-able is chosen from among the nodes adjacent to a core of the starting partialassignment.In Figure 2, the core subtree is made up from the four nodes in the middle thatare fully assigned. Any variable that is contained in the �ve nodes adjacent tothe core are admissible for assignment.Suppose a admissible decision assignment to variable v results in a conict.The unsatis�ed clause cannot be contained in any of the nodes of the core NC ,because the starting partial assignment which was non-conicting had alreadyassigned values to all the variables in the nodes of NC . N nNC in general formsa forest of subtrees, one subtree of which contains nD , the node adjacent toNC which contains v. The unsatis�ed clause must exist in this subtree, becauseno decision in nD can cause any implication in any other subtree, since anyimplication path would have to traverse nodes in NC but all variables in NChave already been assigned. This leads to:Lemma 2. If a conict is deduced from a admissible decision assignment, aconict clause can be constructed from the variables in a single tree node, inparticular from the variables in nD.This can be seen by considering the chains of implications from the decisionvariables to the unsatis�ed clause. Every implication chain to the unsatis�edclause starts at a node in NC [ fnDg and ends at a node containing the conictin the subtree which contains nD. NC touches this subtree at nD, thereforeevery implication chain from a decision variable to the unsatis�ed clause mustpass through nD. A conict clause must include enough variables assigned bydecision or deduction to generate the conict. Since every implication chainincludes a variable in nD, a conict clause can be built from these variables.
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Fig. 3. An implication graphAs an example, consider the implication graph in Figure 3 where a conictarises from the admissible decision to assign variable 1 the value 0 in the CNFfrom Figure 1. To see that this decision is admissible, note that earlier decisionshas assigned variables 4 and 7 the value 0, which has led to an implied valuefor variable 2. Node F hence forms a core, which means that all variables in theadjacent node E are admissible. As the current conict stems from an admissibledecision, we can construct a conict clause from the variables in a single node|the variables 1 and 2 in node E.One concern regarding conict clause construction is that the tree decom-position for the original CNF formula might not be a valid decomposition forthe new formula that includes the constructed conict clause. But since eachconstructed clause is contained within an original tree node, the original treedecomposition does remain valid as conict clauses are added.4.3 Tree Decomposition and DecisionA SAT procedure needs a way to select a decision variable whenever unassignedvariables remain. We have seen that admissible decision assignments let us buildconict clauses from variables contained in a single tree node. However, admissi-ble decision assignments are not available before a core subtree has been formed.We now describe an complete method to select decision variables that permitsus to maintain our constraint on sets of variables in conict clauses.De�nition 3. Given a CNF formula and a partial assignment consisting ofdecision assignments and deductions, an unassigned variable is a compatibledecision candidate relative to a tree decomposition of the CNF formula if itsatis�es the following criteria:{ If no decision assignments have been made yet, then any unassigned variableis a compatible candidate.{ If no core subtree exists, then a compatible candidate must be contained in anode that contains all current decision variables.{ If a core subtree exists for the current partial assignment, a compatible can-didate must be contained in a node adjacent to a core.That selecting decision variables from among compatible candidates is ane�ective strategy is established by the following two lemmas.



Lemma 3. If each decision in a partial assignment is selected from candidatescompatible with a tree decomposition, and unassigned variables remain, then acompatible candidate exists.The argument for this is inductive. As long as no core exists, the strategycalls for selecting variables from some common node. Once no unassigned vari-ables are left in that common node, then that node becomes the seed for a coresubtree, guaranteeing the existence of a core. A core is de�ned to be maximal,so nodes adjacent to a core must have unassigned variables. As long as onepicks compatible candidates, further compatible candidates will exist until theassignment is complete.Lemma 4. If a decision assignment to a compatible candidate results in a con-ict, then a conict clause can be built from variables in a single tree node.To see this, we consider two cases. As long as a core does not exist, all decisionvariables come from some common node. A conict clause can be constructedfrom the variables of this node, e.g. from the decision variables themselves. Whena core exists, the compatible candidates are just those which give admissibleassignments, so by Lemma 2 a conict clause can be built from some singlenode.With a decision variable selection strategy that supports conict clause con-struction from single tree nodes, we can conclude that:Theorem 1. Given a tree decomposition for a CNF formula, decision and di-agnosis can be performed so that for each conict clause constructed, some nodecontains all the variables in the clause.5 Constructing Tree DecompositionsThe e�ectiveness of the conict clause construction method we have describedrelies on �rst constructing, for a given CNF instance, a tree decomposition ofsmall width. Clearly some CNF instances will not have any small width decom-positions, and for these the methods we have described will not provide a usefulbound on the sizes of conict clauses or their number. But we expect that manypractical problems will have small width. For example, it has been observed [18]that digital circuits tend to have small cutwidth. Small cutwidth implies smalltreewidth, so we expect our method to be e�ective on a large fraction of dig-ital circuits. Moreover, the reverse is not necessarily true, so our method hasthe potential of being e�ective even on some classes of problems that have anintractable cutwidth.Finding a minimal width tree decomposition for an arbitrary graph is NP-complete [5], so an e�cient general algorithm is unlikely to exist. For �xed k,checking if a graph has treewidth k and constructing a width k tree decomposi-tion if it does can be done in time linear in the size of the graph [7]. Unfortunately,current algorithms grow in cost very rapidly with k, and are only practical for
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Fig. 4. Constructing a tree decompositionvery small k, roughly k � 4 [19]. Much more e�cient algorithms have been de-veloped for approximating k with bounded error [2], but even these appear tobe too costly for industrial problems.Due to the limitations of the direct approaches to computing a tree decom-position, we have taken a di�erent approach. We rely on the facts that treedecompositions can be derived from orderings of hypergraph vertices [8]|CNFvariables in our case|and that a plethora of robust and scalable CNF variableordering methods is available. Given an ordering of variables, we use the fol-lowing algorithm to compute a decomposition of a hypergraph representationG:1. Let v be the next unprocessed variable in the variable order.2. Add a new tree node n to the tree decomposition D with �(n) = Se3v e3. Update the hypergraphG by deleting all hyperedges containing v and addinga single hyperedge en = �(n) n fvg.4. Add arcs to the tree decomposition so that n is connected to every node n0whose hyperedge en0 just was deleted from G in step 3.5. If unprocessed variables exists, goto 1, else we are done.As an example, in Figure 4 we illustrate the generation of the tree decomposi-tion from Figure 1 using the variable order 8; 5; 6; 0; 1; 3; 7; 2; 4. The �rst variablein the order, 8, is contained in the clauses ( 1 2 8 ) and (2 3 �8), so when thenode A is built, �(A) is set to f1; 2; 3; 8g. The new hyperedge eA = (1 2 3) thenreplaces the two clauses with variable 8. Variable 5 generates �(B) = f2; 3; 5gand eB = (2 3). Variable 6 generates �(C) = f0; 1; 6g and eC = (0 1 ). Thenext variable in the order, 0, is contained in the clauses (�0 1 2), ( 0 1 �3),



and (0 �1 6), as well as the added hyperedge eC . So �(D) will be f0; 1; 2; 3g.Since node D incorporates hyperedge C, an arc is added between nodes C andD. Separate nodes could be built to reect the elimination of variables 1 and 3,but since node D already includes all the variables involved, one can compactthe tree by just letting node D serve for the elimination of all three variables0; 1; and 3. To reect this, arcs are also added between node D and nodes Aand B. The new hyperedge eD = (2) then replaces the clauses and earlier addedhyperedges containing the eliminated variables. The creation of nodes E and Fthen continues in the same pattern.The algorithm we use to build tree decompositions reduces the problem of�nding a good tree decomposition to the problem of �nding a good variable order.We have explored the use of two di�erent methods for constructing variableorders for industrial-sized problems; a simple greedy method and a method basedon linear arrangement. The simple greedy method we tried was the min-degreeheuristic [2, 20] which is fast and known to give reasonable results. Each nextvariable in the order is determined on the y from the reduced hypergraph fromwhich earlier variables have been eliminated. The variable chosen to be next inthe order is the variable for which jSe3v ej is smallest, being the size of the treenode to be constructed to eliminate the variable.The second heuristic we explored is built using the MINCE linear placementengine [1]. The objects placed by MINCE are the hyperedges of the graph, cor-responding to the CNF clauses. MINCE then generates a linear order of theclauses, attempting to reduce the cutwidth, the largest number of variables ap-pearing in clauses on both sides of a cut. We then convert the clause order toa variable order by placing v1 before v2 if the last clause containing v1 occursbefore the last clause containing v2. Since MINCE orders the clauses in a way tokeep clauses with common variables near each other, our hope is that the treedecompositions generated from the MINCE clause order will have small width.6 Implementing a Tree-based DPLL SolverLet us consider the practicalities of integrating the tree decomposition approachto satis�ability solving into a modern Cha�-like [17] DPLL engine. In order tomake use of a tree decomposition, we need to (1) modify the conict clausegeneration; and (2) control the selection of decision variables so that we only usecompatible candidates.We solve the �rst problem by modifying the standard 1-UIP [22] conictclause generation slightly so that the conict clauses that it returns are forcedto contain variables exclusively from the last node a decision variable was selectedfrom (the choice node)In solving the second problem, we are free to use any variable order thatrespects the compability conditions. We will consider two ways of changing theVariable State Independent Decaying Sum (VSIDS) variable order [17].The �rst of these approaches is the static node VSIDS order: Given a treedecomposition of a CNF problem, we generate a order on the nodes in the tree



Benchmark Size Tree width Static tree-sat Dyn. tree-sat Traditional sat(v/c) # dec # dec # decdubois 50 150/400 4 101 101 2 647dubois 500 1500/4000 4 1 226 2 002 58 316dubois 1000 3000/8000 4 3 351 6 576 242 616dubois 2000 6000/16000 4 10 301 18 223 712 153addm 4 3 253/842 18 938 965 1 410addm 4 4 433/1548 29 2 653 5 313 3 684addm 4 5 661/2242 37 6 141 17 311 12 545addm 4 6 937/3194 42 23 735 31 370 32 796addm 4 7 1261/4314 51 1 480 277 83 533 134 426addm 5 3 406/1367 29 3 716 12 060 8 344addm 5 4 701/2382 41 37 842 64 132 42 486addm 5 5 1076/3677 50 651 478 1 109 646 166 84797686 4566/13987 170 1914 6228 9 485Table 1. Experimental resultsdecomposition once and for all by computing the average initial variable scorein each node. Each node's position in this order is static in the sense that itwill not change during the search for a satisfying assignment. The largest nodeaccording to this measure is picked as the initial choice node in the tree (theroot node). Whenever we need to select a new decision variable, we pick the bestscored variable according to the VSIDS measure from current node. When nounassigned variables remains in our choice node, we move on to the best nodeadjacent to the core according to the static node order.The second approach, the dynamic node variable order, di�ers from the staticorder in that we do not necessarily exhaust a choice node before we move on tothe next node (with the exception of the initial root node, as this is requiredfor compatibility). Instead, we pick a new choice node for each decision, byselecting that node adjacent to the core that will allow us to pick the highestscored variable according to VSIDS. In the dynamic node order, we pick the rootnode to be the node with the highest average of the smallest 10% of the nodes.The rationale for this is that we want to �nd a balance between being lockedinto a root node for the smallest number of decisions possible, and still makedecisions using strong variables. In contrast to the static node order, we pick anew root node every time the proof search is restarted.7 Experimental ResultsIn this section, we present the experimental performance of the tree-based SATusing the dynamic and the static variable order. Our objective is to show thatsatis�ability solving based on tree decomposition has potential in the sense thatthere are classes of formulas where it can be used to decrease the number ofdecisions signi�cantly compared to a standard DPLL solver.Our benchmark problems are a mixture of industrial and public benchmarks:The Dubois problems are a series of random benchmarks generated by the gen-



sathard program that is included in the DIMACS benchmark distribution [15].The remaining problems are inhouse-generated equivalence checking problems.In particular, the addm x y examples are equivalence checks between di�erentways of implementing the addition of x y-bit numbers. The two implementationsin each benchmark di�er in the order they process individual bits from the dif-ferent words. Note that the di�erent addm benchmarks of varying size are notrelated in the sense that any one is a simple extension of the other|no addertrees in any of the problems have substructures that are even remotely similar.We found that tree decompositions constructed using the MINCE-basedheuristic generally gave signi�cantly smaller treewidths than those constructedusing the simple greedy heuristic, therefore the SAT results we report here usedthe MINCE-based heuristic. Since underlying MINCE engine, is randomized,di�erent tree decompositions are generated for each run. We report the averagevalue of ten SAT runs for the tree-based solvers.To illustrate the di�erent behavior of the two tree decomposition heuristics,we gathered information on the distribution of node sizes for each when run onthe addm 5 5 problem. Percentile Greedy MINCE20th 6 21median 7 3380th 12 41max 95 46The largest node in the MINCE-based decomposition, with 46 variables, isless than half that of the greedy decomposition. The greedy heuristic generatesmany small nodes and just a few large ones, while the MINCE-based heuristicgenerates a much more uniform distribution. Since the number of conict clausesthat can be constructed is exponential in the size of the nodes, the disadvantageof a few large nodes more than outweighs the advantage of many smaller ones.The computational cost of the MINCE-based heuristic is dominated by that ofthe underlying MINCE engine, making the greedy heuristic considerably faster.For example, on the addm 5 5 problem the greedy heuristic was about 35x fasterthan the MINCE heuristic.Our core DPLL solver is on par with Berkmin and ZCha� in terms of speed,but the additions for doing tree decomposition and handling the core are un-optimized. We therefore focus on comparing the proof methods in terms of thenecessary number of decisions. This has the added bene�t that it provides animplementation and platform independent measure of the potential of the meth-ods.As Table 1 indicates, the Dubois problems seem to have the interesting char-acteristic that their tree decompositions widths is held constant at 4 even whenproblem size increases. This means that they are easy for our tree-based solversin the sense that very short conict clauses will be needed to solve them. Theexperimental data con�rms that both the static and dynamic tree-based DPLLsolver needs orders of magnitude fewer decisions than our reference standardDPLL solver.



In contrast, the generated tree decompositions for the addm x y examplesincrease with the size and number of operands. The tree width for the largerexamples ranges from 18 up to over 50. Still, the tree decomposition seems to behelpful, especially using the static variable order. However, for the very largestexample (addm 5 5 ), the tree-based methods do many times worse than theplain solver. One of the potential reasons for this is that it becomes harder forour current tree decomposition engine to �nd a high quality decomposition asthe problem size increases.The industrial circuit 97686 has the largest tree width of all the benchmarks.Interestingly, it can still be solved using relatively few decisions by the staticvariable ordering algorithm. Even a tree decomposition with a high width canthus sometimes can be helpful.As can be seen from the table, the static variable order seems to be betterin almost all cases than the dynamic variable order. The results hence indicatethat for these examples it is advantageous to keep the variables that are relatedby the nodes together in the variable order, rather than to try to emulate theVSIDS order as closely as possible.Additional insight into the behavior of the conict clause construction methodwe have described can be gained from the distribution of conict clauses con-structed. We gathered data for the addm 5 5 problem:Percentile Static tree-sat Traditional sat20th 40 35median 42 10580th 44 141max 45 351This data shows that with conventional methods for decision and diagno-sis, most conict clauses constructed are longer than even the longest clausesconstructed with our method based on tree decomposition.We would like to note that although our results show consistent improve-ments in the number of decisions, we presently do not fare as well in termsof runtime. This is partly due to an unoptimized implementation of tree-basedDPLL and partly due to the overhead of our unsophisticated tree decomposer.For example, the tree-based DPLL engines are a factor three to ten times slowerper decision in terms of the pure DPLL engine on the addm examples, and weincur between three seconds and four minutes of overhead from generating thetree decompositions. However, some recent developments that we discuss in ourconclusions in Section 9 suggest that a more e�cient implementation of ourmethod will have the potential to scale well also in terms of runtime.8 Related WorkThere have been other attempts to construct e�cient decision methods for for-mulas with low treewidth. One such approach is Darwiche's Decomposable Nega-tion Normal Form (DNNF) [10]. Formulas that have bounded treewidth can be



checked for satis�ability in linear time by �rst translating them into DNNF, andthen applying a simple test. We expect there to be examples where satis�abilitysolving based on DNNF translation is superior to tree-based DPLL, since ourtheoretical complexity bound is quadratic. However, one appealing aspect of ourapproach is that the underlying SAT solving machinery that we are making useof is mature and is known to perform well in practice on industrial examples.Moreover, our light-weight integration makes it possible for us to interface tonew solvers as soon as the state-of-the-art for DPLL solving advances.The oracle we use for generating tree decompositions, MINCE, has previouslybeen applied to the generation of variable orders both for BDDs and for SAT-solvers [1]. In this context, MINCE is used as a preprocessing step that generatesan initial order. In contrast, we use MINCE to construct a tree decompositionthat not only guides the variable ordering process in its entirety, but also guidesthe construction of conict clauses.There are strong parallels between our static node variable order and Amirand McIlrath's heuristic for generating a DPLL variable order from a decompo-sition of a propositional theory [3]. In this work the partitions are �rst orderedbased on their constrainedness|the ratio of clauses contained in a given parti-tion to the number of partition variables. The propositional variables are thenordered in a way that respects this partition order. A signi�cant di�erence be-tween our use of a given tree decomposition and Amir and McIlrath's is thatwe guarantee that all generated conict clauses have length bounded by thetreewidth of the decomposition.9 Conclusions and Future WorkThere has been a lot of research into tree decomposition, and there exists arich theory about how tree decompositions can be used to solve NP-completeproblems. However, the prior work in this �eld has not focused primarily onattempting to leverage tree decomposition to achieve speed ups on large real-life satis�ability problems. There has also been very little research that hasaimed to combine the strengths of state-of-the-art satis�ability solvers with atree decomposition generator that is practical for realistic problems.The work that we have presented here represents a �rst step in this direction,and we hope that the results we have shown will stimulate further research. Thesimple approach we have presented already shows promise in the sense that itcan decrease the number of necessary decisions for solving problems signi�cantly,as witnessed by the order of magnitude improvements for the Dubois problems.Moreover, our work demonstrates that there exists heuristics that can processproblems containing many thousands of variables and clauses in reasonable time,and still provide results that can help improve SAT solving e�ciency. Finally, wehave shown that there are structured problems from real-life, such as the addmproblems, that have reasonable tree widths and where even an unre�ned pro-cedure that attempts to leverage tree decompositions can improve the decisioncount substantially.



We believe that tree decomposition can be a valuable tool for SAT. How-ever, there is still work that remains to be done. For example on the benchmarkproblems, the best runs of MINCE often provide as few as half as many deci-sions than the average values that we have reported. As future work, we wouldtherefore like to study how we can improve the tree decomposition engine, andtune our tree-based DPLL solver.It is already clear that there is a lot more to be gained: In a parallel develop-ment to our original conference paper in SAT 2003, Huang and Darwiche haveintroduced a variable ordering heuristic that is a continuation of Darwiche'swork on DNNF [14]. They guide decision variable selection in a DPLL solverusing DTrees|the subclass of tree decompositions that correspond to full bi-nary trees. Huang and Darwiche's variable selection heuristic uses the DTree tocompute an order on the tree nodes that never changes during the executionof the search. However, just like in our case, the SAT engine is free to choseany decision variable within the current node until it is full. The most impor-tant di�erence between Darwiche and Huang's work, and the work presentedin this paper is that we not only use the tree decomposition to guide decision,but use the structural information to enforce bounded conict clause construc-tion. Other, less signi�cant, di�erences are that (1) we use a di�erent oracle forgenerating tree decompositions, (2) we consider full tree decompositions ratherthan DTrees, and (3) our node order may change during the execution at theprice of more runtime overhead. The DTree-based heuristic extends our experi-mental results by demonstrating that even in the case where conict clauses arenot bounded, runtimes can be improved signi�cantly on a number of structuredunsatis�able benchmarks by navigating a subclass of tree decompositions in acompletely static way. We are very excited about the results achieved by Huangand Darwiche, and we are eager to investigate how much further we can get bycombining the bene�ts of their lower overhead approach to decision guiding withthe power of our bounded conict clause generation.References1. F. Aloul, I. Markov, and K. Sakallah. Faster SAT and Smaller BDDs via CommonFunction Structure. In Proc. Intl. Conf. on Computer-Aided Design, pages 443{448, 2001.2. E. Amir. E�cient Approximation for Triangulation of Minimum Treewidth. InProc. Conf. on Uncertainty in Arti�cial Intelligence, 2001.3. E. Amir and S. McIlraith. Solving satis�ability using decomposition and the mostconstrained subproblem. In Proc. Workshop on Theory and Applications of Satis-�ability Testing, 2001.4. S. Arnborg. E�cient Algorithms for Combinatorial Problems on Graphs withBounded Decomposability - A Survey. BIT, 25:2{23, 1985.5. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of �nding embeddingsin a k-tree. SIAM Journal of Algebraic and Discrete Methods, (8), 1987.6. H. Bodlaender. A Tourist Guide through Treewidth. Acta Cybernetica, 11, 1993.7. H. Bodlaender. A linear time algorithm for �nding tree-decompositions of smalltreewidth. In Proc. ACM Symposium on the Theory of Computing, 1993.
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