Guiding SAT Diagnosis with Tree
Decompositions

Per Bjesse, James Kukula, Robert Damiano, Ted Stanion, and Yunshan Zhu

Advanced Technology Group, Synopsys Inc.

Abstract. A tree decomposition of a hypergraph is a construction that
captures the graph’s topological structure. Every tree decomposition has
an associated tree width, which can be viewed as a measure of how tree-
like the original hypergraph is. Tree decomposition has proven to be a
very useful theoretical vehicle for generating polynomial algorithms for
subclasses of problems whose general solution is NP-complete. As a rule,
this is done by designing the algorithms so that their runtime is bounded
by some polynomial times a function of the tree width of a tree decompo-
sition of the original problem. Problem instances that have bounded tree
width can thus be solved by the resulting algorithms in polynomial time.
A variety of methods are known for deciding satisfiability of Boolean
formulas whose hypergraph representations have tree decompositions of
small width. However, satisfiability methods based on tree decomposition
has yet to make an large impact. In this paper, we report on our effort
to learn whether the theoretical applicability of tree decomposition to
SAT can be made to work in practice. We discuss how we generate tree
decompositions, and how we make use of them to guide variable selec-
tion and conflict clause generation. We also present experimental results
demonstrating that the method we propose can decrease the number of
necessary decisions by one or more orders of magnitude.

1 Introduction

Tree decomposition [6] is a graph theoretic concept which abstractly captures
topological structure in a variety of problems [4] such as constraint satisfac-
tion [12], Gaussian elimination [21], database query processing [9], and image
computation [13].

The topological structure of a Conjunctive Normal Form (CNF) formula can
be represented as a hypergraph, where the vertices of the hypergraph correspond
to the variables of the CNF and the hyperedges correspond to the clauses. Given
a small treewidth tree decomposition for a hypergraph of a CNF formula, a
variety of methods are known for deciding its satisfiability [12, 10, 3].

In this paper we report on our effort to learn whether satisfiability solving
guided by tree decomposition can be made to work in practice. To do this, we
attempt to find tree decompositions of small treewidth for significant problems,
and to incorporate methods based on tree decomposition into a state-of-the-art
SAT solver.

The end result of the work presented in this paper is a satisfiability checking
method that given a bounded width tree decomposition of a problem instance
will be guaranteed to run in quadratic time. We present the methods we use
for generating tree decompositions and show how we make use of the tree de-
composition to guide diagnosis and conflict clause generation. We also present
experimental results that demonstrate that there are real-life SAT instances with
small tree width, where our tree-sat method decreases the number of necessary
decisions by one or more orders of magnitude.

2 Preliminaries

In the remainder of this paper, we will focus on augmenting GRASP-like [16]
implementations of the Davis-Putnam-Loveland-Logemann (DPLL) method [11]
with tree decomposition guidance. We refer readers unfamiliar with decision, de-
duction, and diagnosis components of such algorithms, including conflict graphs
and backjumping, to [23].

3 Tree Decomposition

Given a hypergraph G = (V, E), where V is a set of vertices and E a set of

hyperedges with e C V for each e € E, a tree decomposition of G is a triple
(N, F,x) where

1. N is a set of nodes,

F C N x N is a set of arcs such that (N, F') forms an unrooted tree,

x : N — 2V associates a subset of vertices with each tree node,

for every hyperedge e € E, there is some node n € N such that e C x(n),
for every nq,n9,ng € N, if ny lies on the path in (N, F') between n, and ng,
then x(n1) N x(ns) C x(n2). This means that, for each vertex v € V', the set
of nodes that contain v form a subtree of (N, F').

Gl

Informally, this means that a tree decomposition of a CNF formula will be
an unrooted tree, whose nodes contain subsets of the variables in the formula.
This tree needs to fulfill the two properties that (1) the set of variables in each
clause in the CNF needs to be a subset of some node, and (2) the set of nodes
that contain a variable v from the original CNF must form a subtree of the tree
decomposition.

The treewidth of a tree decomposition is max,en [x(n)| —1. The treewidth of
a hypergraph is the smallest treewidth of any of its possible tree decompositions.

Figure 1 shows an example of a CNF formula and an associated tree decom-
position of treewidth 3.

4 Tree Decomposition and DPLL-SAT

We will now relate each of the core algorithmic components of modern DPLL-
based SAT solvers decision, deduction, and diagnosis to tree decomposition.

(@)
P
=

Tree Decomposition of CNF

=
\
wN N

.
godene®

obN Rk
K=

N~~~ e~
N
Wk AP R

N O
'

Fig.1. A CNF formula and its tree decomposition

First, we show that a tree decomposition of a CNF formula will necessarily
include paths corresponding to all possible chains of deduction resulting from
assigning one or more variables. Next, we describe a set of conditions under which
all chains from decision variables to an unsatisfied clause will pass through some
common tree node, so that a legitimate conflict clause can be constructed from
the variables in that node. Finally, we outline constraints on decision variable
selection that insure these conditions are met.

Before we proceed further, however, we would like to note that a SAT proce-
dure that restricts itself to constructing conflict clauses contained in tree nodes
will be polynomial in the problem size for any class of problems with treewidth
bounded by w. To see this, we can think of a SAT procedure as a series of conflict
clause constructions. The number of conflict clauses constructed will be limited
to O(n3"), where n is the size of the CNF formula, since any tree decomposition
can be trivially reduced to have O(n) nodes and each node with w variables
can only generate 3" clauses. When the ¢’th conflict clause is constructed, the
CNF formula will have grown to size O(n + i) from the addition of the prior
conflict clauses. The time required to build the i’th conflict clause is linear in
this size, since a chain of implications could propagate through a large fraction
of the clauses. Thus the total SAT procedure will be bounded by

n3"

> (n+i)=0(n’9")

i=0

There exists SAT algorithms for bounded treewidth problems that are linear
rather than quadratic in the problem size [12]. However, these algorithms do
not make use of the strength of DPLL solvers and as far as we know, none of
these algorithms have managed to scale in practice. As our goal is to explore
techniques that are effective for typical industrial problem instances, and DPLL
solvers have proved to be very competitive in this context, our focus in this paper
will thus be on modifying a DPLL solver to generate bounded conflict clauses
even though the resulting complexity is superlinear.

4.1 Tree Decomposition and Deduction

Let us start by showing that for each chain of implications resulting from a
variable assignment, there is a corresponding path in the tree decomposition.

The construction of DPLL solvers guarantees that every variable with an
implied value is given that value because of some antecedent clause. Moreover,
at the time of implication every variable in the clause except the implied variable
must have been given some value, either through decision or through implication.
Let us consider an arbitrary chain of implications vg,v1, ..., v, where vy is a
decision variable, v; was given an implied value before v; whenever 0 < i < j,
and for each ¢ < k, v; appears in the antecedent ¢; 11 of v;y1.

Lemma 1. For any chain of implications there is path in the tree decomposition
ng,ni, ..., n together with a mapping p : [0..1] — [0..k], satisfying

Either n; = n;y1, or n; and n;y1 are adjacent in the tree decomposition.
— Vp(i) € X(ni)

- p(0)=0

-p()=k

— Ifp(i) = 4, then either p(i +1) =j orp(i+1) = j + 1.

If p(i) # p(i + 1), then n; = niyq.

This node sequence is built up from paths in the tree between nodes contain-
ing successive antecedent clauses. To see this, focus on some particular subse-
quence v;, Vi1, ¢ > 0, together with the antecedents ¢; of v; and ¢; 11 of v;11. By
rule 4 of tree decomposition, clause ¢; must be contained by some tree node n,,
and similarly clause c; 1 must be contained by some n.,,, Variable v; must be in
clause ¢; since ¢; is the antecedent of v;, and so v; must be in node n,,. Variable
v; must also be in clause ¢;41 since v;,v;4+1 is part of an implication chain, so v;
must also be in node n,_, . Since variable v+ is in both nodes n.; and n.,,, by
rule 5 of tree decomposition it must be in every tree node on the path between
them. In this way we can build up the complete path in the tree decomposition
by appending the paths joining each pair of successive antecendent clauses ¢;
and Cit1-

As an example, consider the CNF formula in Figure 1. Assume that the
variables v; and vy in the implication chain 7,2, 8 has the antecendent clauses
cr = (—247) and ¢ = (128). The following is then a path and mapping
corresponding to the chain:

i|012345
n; | FFEDAA
pE)] 011112
Vpi)| 722228

4.2 Tree Decomposition and Diagnosis

Next we define a set of conditions under which a conflict clause can be con-
structed from variables within a single tree node.

Definition 1. Given a CNF formula, a tree decomposition of it, and a partial
assignment composed of decision and deduction assignments, a core subtree N¢
is a monempty maximal subtree that satisfies:

& no unassigned

variables
decision, implied

and unassigned
variables

@ no decision
variables

al variables
Q unassigned

Fig. 2. Core and adjacent nodes

— For each decision variable v in the partial assignment, some node in N¢ or
some node adjacent to No contains v.
— FEwvery variable in every node of N is assigned.

Definition 2. Given a non-conflicting partial assignment, a further decision
assignment is admissible relative to a tree decomposition if the decision vari-
able is chosen from among the nodes adjacent to a core of the starting partial
assignment.

In Figure 2, the core subtree is made up from the four nodes in the middle that
are fully assigned. Any variable that is contained in the five nodes adjacent to
the core are admissible for assignment.

Suppose a admissible decision assignment to variable v results in a conflict.
The unsatisfied clause cannot be contained in any of the nodes of the core N¢,
because the starting partial assignment which was non-conflicting had already
assigned values to all the variables in the nodes of N¢o. N \ N¢ in general forms
a forest of subtrees, one subtree of which contains np, the node adjacent to
N¢ which contains v. The unsatisfied clause must exist in this subtree, because
no decision in np can cause any implication in any other subtree, since any
implication path would have to traverse nodes in N but all variables in N¢
have already been assigned. This leads to:

Lemma 2. If a conflict is deduced from a admissible decision assignment, a
conflict clause can be constructed from the variables in a single tree node, in
particular from the variables in np.

This can be seen by considering the chains of implications from the decision
variables to the unsatisfied clause. Every implication chain to the unsatisfied
clause starts at a node in No U {np} and ends at a node containing the conflict
in the subtree which contains np. N¢ touches this subtree at np, therefore
every implication chain from a decision variable to the unsatisfied clause must
pass through np. A conflict clause must include enough variables assigned by
decision or deduction to generate the conflict. Since every implication chain
includes a variable in np, a conflict clause can be built from these variables.

(128—8 \ Unsatisfied Clause

(247 —t 20
e ' /
1
1 1
Varigblesfor 1+ (01-3 —-3
new conflict ~=-=- /
clause

(012 —~-0

Fig. 3. An implication graph

As an example, consider the implication graph in Figure 3 where a conflict
arises from the admissible decision to assign variable 1 the value 0 in the CNF
from Figure 1. To see that this decision is admissible, note that earlier decisions
has assigned variables 4 and 7 the value 0, which has led to an implied value
for variable 2. Node F hence forms a core, which means that all variables in the
adjacent node E are admissible. As the current conflict stems from an admissible
decision, we can construct a conflict clause from the variables in a single node
the variables 1 and 2 in node E.

One concern regarding conflict clause construction is that the tree decom-
position for the original CNF formula might not be a valid decomposition for
the new formula that includes the constructed conflict clause. But since each
constructed clause is contained within an original tree node, the original tree
decomposition does remain valid as conflict clauses are added.

4.3 Tree Decomposition and Decision

A SAT procedure needs a way to select a decision variable whenever unassigned
variables remain. We have seen that admissible decision assignments let us build
conflict clauses from variables contained in a single tree node. However, admissi-
ble decision assignments are not available before a core subtree has been formed.
We now describe an complete method to select decision variables that permits
us to maintain our constraint on sets of variables in conflict clauses.

Definition 3. Given a CNF formula and a partial assignment consisting of
decision assignments and deductions, an unassigned variable is a compatible
decision candidate relative to a tree decomposition of the CNF formula if it
satisfies the following criteria:

— If no decision assignments have been made yet, then any unassigned variable
1s a compatible candidate.

— If no core subtree exists, then a compatible candidate must be contained in a
node that contains all current decision variables.

— If a core subtree exists for the current partial assignment, a compatible can-
didate must be contained in a node adjacent to a core.

That selecting decision variables from among compatible candidates is an
effective strategy is established by the following two lemmas.

Lemma 3. If each decision in a partial assignment is selected from candidates
compatible with a tree decomposition, and unassigned variables remain, then a
compatible candidate exists.

The argument for this is inductive. As long as no core exists, the strategy
calls for selecting variables from some common node. Once no unassigned vari-
ables are left in that common node, then that node becomes the seed for a core
subtree, guaranteeing the existence of a core. A core is defined to be maximal,
so nodes adjacent to a core must have unassigned variables. As long as one
picks compatible candidates, further compatible candidates will exist until the
assignment is complete.

Lemma 4. If a decision assignment to a compatible candidate results in a con-
flict, then a conflict clause can be built from variables in a single tree node.

To see this, we consider two cases. As long as a core does not exist, all decision
variables come from some common node. A conflict clause can be constructed
from the variables of this node, e.g. from the decision variables themselves. When
a core exists, the compatible candidates are just those which give admissible
assignments, so by Lemma 2 a conflict clause can be built from some single
node.

With a decision variable selection strategy that supports conflict clause con-
struction from single tree nodes, we can conclude that:

Theorem 1. Given a tree decomposition for a CNF formula, decision and di-
agnosis can be performed so that for each conflict clause constructed, some node
contains all the variables in the clause.

5 Constructing Tree Decompositions

The effectiveness of the conflict clause construction method we have described
relies on first constructing, for a given CNF instance, a tree decomposition of
small width. Clearly some CNF instances will not have any small width decom-
positions, and for these the methods we have described will not provide a useful
bound on the sizes of conflict clauses or their number. But we expect that many
practical problems will have small width. For example, it has been observed [18]
that digital circuits tend to have small cutwidth. Small cutwidth implies small
treewidth, so we expect our method to be effective on a large fraction of dig-
ital circuits. Moreover, the reverse is not necessarily true, so our method has
the potential of being effective even on some classes of problems that have an
intractable cutwidth.

Finding a minimal width tree decomposition for an arbitrary graph is NP-
complete [5], so an efficient general algorithm is unlikely to exist. For fixed k,
checking if a graph has treewidth k& and constructing a width k& tree decomposi-
tion if it does can be done in time linear in the size of the graph [7]. Unfortunately,
current, algorithms grow in cost very rapidly with &k, and are only practical for

(1-24 (1-24 (-2 4 (1-2 4

(128

Sie I 313

01 01 g -

(0139 | (013 (013 (247

(247 (247 (247 (247

(0-16) (0-1 6) (0-1 6)

(2-3 5) (2-3 5) A(123)

A:(123) A:(123) B:(23) D:(2)

B:(23) S{CEY

Fig. 4. Constructing a tree decomposition

very small k, roughly k < 4 [19]. Much more efficient algorithms have been de-
veloped for approximating k with bounded error [2], but even these appear to
be too costly for industrial problems.

Due to the limitations of the direct approaches to computing a tree decom-
position, we have taken a different approach. We rely on the facts that tree
decompositions can be derived from orderings of hypergraph vertices [8] CNF
variables in our case and that a plethora of robust and scalable CNF variable
ordering methods is available. Given an ordering of variables, we use the fol-
lowing algorithm to compute a decomposition of a hypergraph representation

G:

1. Let v be the next unprocessed variable in the variable order.

2. Add a new tree node n to the tree decomposition D with x(n) = J,.5, e

3. Update the hypergraph G by deleting all hyperedges containing v and adding
a single hyperedge e,, = x(n) \ {v}.

4. Add arcs to the tree decomposition so that n is connected to every node n’
whose hyperedge e, just was deleted from G in step 3.

5. If unprocessed variables exists, goto 1, else we are done.

As an example, in Figure 4 we illustrate the generation of the tree decomposi-
tion from Figure 1 using the variable order 8,5,6,0,1,3,7,2, 4. The first variable
in the order, 8, is contained in the clauses (12 8) and (23 —8), so when the
node A is built, x(A) is set to {1,2,3,8}. The new hyperedge e4 = (12 3) then
replaces the two clauses with variable 8. Variable 5 generates x(B) = {2, 3,5}
and eg = (23). Variable 6 generates x(C) = {0,1,6} and ec = (01). The
next variable in the order, 0, is contained in the clauses (—012), (01 —-3)

3 3

and (0 —16), as well as the added hyperedge ec. So x(D) will be {0,1,2,3}.
Since node D incorporates hyperedge C, an arc is added between nodes C and
D. Separate nodes could be built to reflect the elimination of variables 1 and 3,
but since node D already includes all the variables involved, one can compact
the tree by just letting node D serve for the elimination of all three variables
0,1, and 3. To reflect this, arcs are also added between node D and nodes A
and B. The new hyperedge ep = (2) then replaces the clauses and earlier added
hyperedges containing the eliminated variables. The creation of nodes E and F
then continues in the same pattern.

The algorithm we use to build tree decompositions reduces the problem of
finding a good tree decomposition to the problem of finding a good variable order.
We have explored the use of two different methods for constructing variable
orders for industrial-sized problems; a simple greedy method and a method based
on linear arrangement. The simple greedy method we tried was the min-degree
heuristic [2,20] which is fast and known to give reasonable results. Each next
variable in the order is determined on the fly from the reduced hypergraph from
which earlier variables have been eliminated. The variable chosen to be next in
the order is the variable for which |J,5, €| is smallest, being the size of the tree
node to be constructed to eliminate the variable.

The second heuristic we explored is built using the MINCE linear placement
engine [1]. The objects placed by MINCE are the hyperedges of the graph, cor-
responding to the CNF clauses. MINCE then generates a linear order of the
clauses, attempting to reduce the cutwidth, the largest number of variables ap-
pearing in clauses on both sides of a cut. We then convert the clause order to
a variable order by placing v; before vy if the last clause containing v, occurs
before the last clause containing vs. Since MINCE orders the clauses in a way to
keep clauses with common variables near each other, our hope is that the tree
decompositions generated from the MINCE clause order will have small width.

6 Implementing a Tree-based DPLL Solver

Let us consider the practicalities of integrating the tree decomposition approach
to satisfiability solving into a modern Chaff-like [17] DPLL engine. In order to
make use of a tree decomposition, we need to (1) modify the conflict clause
generation; and (2) control the selection of decision variables so that we only use
compatible candidates.

We solve the first problem by modifying the standard 1-UIP [22] conflict
clause generation slightly so that the conflict clauses that it returns are forced
to contain variables exclusively from the last node a decision variable was selected
from (the choice node)

In solving the second problem, we are free to use any variable order that
respects the compability conditions. We will consider two ways of changing the
Variable State Independent Decaying Sum (VSIDS) variable order [17].

The first of these approaches is the static node VSIDS order: Given a tree
decomposition of a CNF problem, we generate a order on the nodes in the tree

Benchmark Size Tree width Static tree-sat Dyn. tree-sat Traditional sat

(v/c) # dec # dec # dec
dubois_50 150/400 4 101 101 2 647
dubois_500 1500/4000 4 1 226 2 002 58 316
dubois_1000 3000/8000 4 3 351 6 576 242 616
dubois_2000 6000/16000 4 10 301 18 223 712 153
addm_4_3 253/842 18 938 965 1410
addm_4_4 433/1548 29 2 653 5 313 3 684
addm_4.5 661/2242 37 6 141 17 311 12 545
addm_4_6 937/3194 42 23 735 31 370 32 796
addm_4_7 1261/4314 51 1480 277 83 533 134 426
addm_5_3 406/1367 29 3 716 12 060 8 344
addm_5_4 701/2382 41 37 842 64 132 42 486
addm_5_5 1076/3677 50 651 478 1 109 646 166 847
97686 4566/13987 170 1914 6228 9 485

Table 1. Experimental results

decomposition once and for all by computing the average initial variable score
in each node. Each node’s position in this order is static in the sense that it
will not change during the search for a satisfying assignment. The largest node
according to this measure is picked as the initial choice node in the tree (the
root node). Whenever we need to select a new decision variable, we pick the best
scored variable according to the VSIDS measure from current node. When no
unassigned variables remains in our choice node, we move on to the best node
adjacent to the core according to the static node order.

The second approach, the dynamic node variable order, differs from the static
order in that we do not necessarily exhaust a choice node before we move on to
the next node (with the exception of the initial root node, as this is required
for compatibility). Instead, we pick a new choice node for each decision, by
selecting that node adjacent to the core that will allow us to pick the highest
scored variable according to VSIDS. In the dynamic node order, we pick the root
node to be the node with the highest average of the smallest 10% of the nodes.
The rationale for this is that we want to find a balance between being locked
into a root node for the smallest number of decisions possible, and still make
decisions using strong variables. In contrast to the static node order, we pick a
new root node every time the proof search is restarted.

7 Experimental Results

In this section, we present the experimental performance of the tree-based SAT
using the dynamic and the static variable order. Our objective is to show that
satisfiability solving based on tree decomposition has potential in the sense that
there are classes of formulas where it can be used to decrease the number of
decisions significantly compared to a standard DPLL solver.

Our benchmark problems are a mixture of industrial and public benchmarks:
The Dubois problems are a series of random benchmarks generated by the gen-

sathard program that is included in the DIMACS benchmark distribution [15].
The remaining problems are inhouse-generated equivalence checking problems.
In particular, the addm_x_y examples are equivalence checks between different
ways of implementing the addition of x y-bit numbers. The two implementations
in each benchmark differ in the order they process individual bits from the dif-
ferent words. Note that the different addm benchmarks of varying size are not
related in the sense that any one is a simple extension of the other no adder
trees in any of the problems have substructures that are even remotely similar.

We found that tree decompositions constructed using the MINCE-based
heuristic generally gave significantly smaller treewidths than those constructed
using the simple greedy heuristic, therefore the SAT results we report here used
the MINCE-based heuristic. Since underlying MINCE engine, is randomized,
different tree decompositions are generated for each run. We report the average
value of ten SAT runs for the tree-based solvers.

To illustrate the different behavior of the two tree decomposition heuristics,
we gathered information on the distribution of node sizes for each when run on
the addm_5_5 problem.

Percentile| Greedy MINCE
20th 6 21
median 7 33
80th 12 41
max 95 46

The largest node in the MINCE-based decomposition, with 46 variables, is
less than half that of the greedy decomposition. The greedy heuristic generates
many small nodes and just a few large ones, while the MINCE-based heuristic
generates a much more uniform distribution. Since the number of conflict clauses
that can be constructed is exponential in the size of the nodes, the disadvantage
of a few large nodes more than outweighs the advantage of many smaller ones.
The computational cost of the MINCE-based heuristic is dominated by that of
the underlying MINCE engine, making the greedy heuristic considerably faster.
For example, on the addm_5_5 problem the greedy heuristic was about 35x faster
than the MINCE heuristic.

Our core DPLL solver is on par with Berkmin and ZChaff in terms of speed,
but the additions for doing tree decomposition and handling the core are un-
optimized. We therefore focus on comparing the proof methods in terms of the
necessary number of decisions. This has the added benefit that it provides an
implementation and platform independent measure of the potential of the meth-
ods.

As Table 1 indicates, the Dubois problems seem to have the interesting char-
acteristic that their tree decompositions widths is held constant at 4 even when
problem size increases. This means that they are easy for our tree-based solvers
in the sense that very short conflict clauses will be needed to solve them. The
experimental data confirms that both the static and dynamic tree-based DPLL
solver needs orders of magnitude fewer decisions than our reference standard
DPLL solver.

In contrast, the generated tree decompositions for the addm_z_y examples
increase with the size and number of operands. The tree width for the larger
examples ranges from 18 up to over 50. Still, the tree decomposition seems to be
helpful, especially using the static variable order. However, for the very largest
example (addm_5_5), the tree-based methods do many times worse than the
plain solver. One of the potential reasons for this is that it becomes harder for
our current tree decomposition engine to find a high quality decomposition as
the problem size increases.

The industrial circuit 97686 has the largest tree width of all the benchmarks.
Interestingly, it can still be solved using relatively few decisions by the static
variable ordering algorithm. Even a tree decomposition with a high width can
thus sometimes can be helpful.

As can be seen from the table, the static variable order seems to be better
in almost all cases than the dynamic variable order. The results hence indicate
that for these examples it is advantageous to keep the variables that are related
by the nodes together in the variable order, rather than to try to emulate the
VSIDS order as closely as possible.

Additional insight into the behavior of the conflict clause construction method
we have described can be gained from the distribution of conflict clauses con-
structed. We gathered data for the addm_5_5 problem:

Percentile| Static tree-sat Traditional sat
20th 40 35
median 42 105
80th 44 141
max 45 351

This data shows that with conventional methods for decision and diagno-
sis, most conflict clauses constructed are longer than even the longest clauses
constructed with our method based on tree decomposition.

We would like to note that although our results show consistent improve-
ments in the number of decisions, we presently do not fare as well in terms
of runtime. This is partly due to an unoptimized implementation of tree-based
DPLL and partly due to the overhead of our unsophisticated tree decomposer.
For example, the tree-based DPLL engines are a factor three to ten times slower
per decision in terms of the pure DPLL engine on the addm examples, and we
incur between three seconds and four minutes of overhead from generating the
tree decompositions. However, some recent developments that we discuss in our
conclusions in Section 9 suggest that a more efficient implementation of our
method will have the potential to scale well also in terms of runtime.

8 Related Work

There have been other attempts to construct efficient decision methods for for-
mulas with low treewidth. One such approach is Darwiche’s Decomposable Nega-
tion Normal Form (DNNF) [10]. Formulas that have bounded treewidth can be

checked for satisfiability in linear time by first translating them into DNNF, and
then applying a simple test. We expect there to be examples where satisfiability
solving based on DNNF translation is superior to tree-based DPLL, since our
theoretical complexity bound is quadratic. However, one appealing aspect of our
approach is that the underlying SAT solving machinery that we are making use
of is mature and is known to perform well in practice on industrial examples.
Moreover, our light-weight integration makes it possible for us to interface to
new solvers as soon as the state-of-the-art for DPLL solving advances.

The oracle we use for generating tree decompositions, MINCE, has previously
been applied to the generation of variable orders both for BDDs and for SAT-
solvers [1]. In this context, MINCE is used as a preprocessing step that generates
an initial order. In contrast, we use MINCE to construct a tree decomposition
that not only guides the variable ordering process in its entirety, but also guides
the construction of conflict clauses.

There are strong parallels between our static node variable order and Amir
and Mcllrath’s heuristic for generating a DPLL variable order from a decompo-
sition of a propositional theory [3]. In this work the partitions are first ordered
based on their constrainedness the ratio of clauses contained in a given parti-
tion to the number of partition variables. The propositional variables are then
ordered in a way that respects this partition order. A significant difference be-
tween our use of a given tree decomposition and Amir and Mcllrath’s is that
we guarantee that all generated conflict clauses have length bounded by the
treewidth of the decomposition.

9 Conclusions and Future Work

There has been a lot of research into tree decomposition, and there exists a
rich theory about how tree decompositions can be used to solve NP-complete
problems. However, the prior work in this field has not focused primarily on
attempting to leverage tree decomposition to achieve speed ups on large real-
life satisfiability problems. There has also been very little research that has
aimed to combine the strengths of state-of-the-art satisfiability solvers with a
tree decomposition generator that is practical for realistic problems.

The work that we have presented here represents a first step in this direction,
and we hope that the results we have shown will stimulate further research. The
simple approach we have presented already shows promise in the sense that it
can decrease the number of necessary decisions for solving problems significantly,
as witnessed by the order of magnitude improvements for the Dubois problems.
Moreover, our work demonstrates that there exists heuristics that can process
problems containing many thousands of variables and clauses in reasonable time,
and still provide results that can help improve SAT solving efficiency. Finally, we
have shown that there are structured problems from real-life, such as the addm
problems, that have reasonable tree widths and where even an unrefined pro-
cedure that attempts to leverage tree decompositions can improve the decision
count substantially.

We believe that tree decomposition can be a valuable tool for SAT. How-
ever, there is still work that remains to be done. For example on the benchmark
problems, the best runs of MINCE often provide as few as half as many deci-
sions than the average values that we have reported. As future work, we would
therefore like to study how we can improve the tree decomposition engine, and
tune our tree-based DPLL solver.

It is already clear that there is a lot more to be gained: In a parallel develop-
ment to our original conference paper in SAT 2003, Huang and Darwiche have
introduced a variable ordering heuristic that is a continuation of Darwiche’s
work on DNNF [14]. They guide decision variable selection in a DPLL solver
using D Trees—the subclass of tree decompositions that correspond to full bi-
nary trees. Huang and Darwiche’s variable selection heuristic uses the DTree to
compute an order on the tree nodes that never changes during the execution
of the search. However, just like in our case, the SAT engine is free to chose
any decision variable within the current node until it is full. The most impor-
tant difference between Darwiche and Huang’s work, and the work presented
in this paper is that we not only use the tree decomposition to guide decision,
but use the structural information to enforce bounded conflict clause construc-
tion. Other, less significant, differences are that (1) we use a different oracle for
generating tree decompositions, (2) we consider full tree decompositions rather
than DTrees, and (3) our node order may change during the execution at the
price of more runtime overhead. The DTree-based heuristic extends our experi-
mental results by demonstrating that even in the case where conflict clauses are
not bounded, runtimes can be improved significantly on a number of structured
unsatisfiable benchmarks by navigating a subclass of tree decompositions in a
completely static way. We are very excited about the results achieved by Huang
and Darwiche, and we are eager to investigate how much further we can get by
combining the benefits of their lower overhead approach to decision guiding with
the power of our bounded conflict clause generation.

References

1. F. Aloul, I. Markov, and K. Sakallah. Faster SAT and Smaller BDDs via Common
Function Structure. In Proc. Intl. Conf. on Computer-Aided Design, pages 443—
448, 2001.

2. E. Amir. Efficient Approximation for Triangulation of Minimum Treewidth. In
Proc. Conf. on Uncertainty in Artificial Intelligence, 2001.

3. E. Amir and S. Mcllraith. Solving satisfiability using decomposition and the most
constrained subproblem. In Proc. Workshop on Theory and Applications of Satis-
fiability Testing, 2001.

4. S. Arnborg. Efficient Algorithms for Combinatorial Problems on Graphs with
Bounded Decomposability - A Survey. BIT, 25:2-23, 1985.

5. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. STAM Journal of Algebraic and Discrete Methods, (8), 1987.

6. H. Bodlaender. A Tourist Guide through Treewidth. Acta Cybernetica, 11, 1993.

7. H. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. In Proc. ACM Symposium on the Theory of Computing, 1993.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

H. Bodlaender, J. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree. Journal of Algo-
rithms, 18:238-155, 1995.

C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In Proc.
Int’l Conf. on Database Theory, volume LNCS 1186, pages 56 70, 1997.

A. Darwiche. Compiling knowledge into decomposable negation normal form. In
Proc. Intl. Joint Conf. on Artificial Intelligence, 1999.

M. Davis, G. Logeman, and D. Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(394-397), 1962.

R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction prob-
lems. Artificial Intelligence, 34(1):1 34, 1988.

A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik. Partition-Based Decision
Heuristics for Image Computation using SAT and BDDs. In Proc. Intl. Conf. on
Computer-Aided Design, pages 286 292, 2001.

J. Huang and A. Darwiche. A structure-based variable ordering heuristic for SAT.
In Proc. Intl. Joint Conf. on Artificial Intelligence, 2003.

D. Johnson and M. Trick, editors. The Second DIMACS Implementation Challenge.
DIMACS series in Discrete Mathematics and Theoretical Computer Science. Amer-
ican Mathematical Society, 1993. (see http://dimacs.rutgers.edu/challenges/).

J. P. Marques Silva and K. A. Sakallah. GRASP—a new search algorithm for
satisfiability. In Proc. Intl. Conf. on Computer-Aided Design, pages 220-227, 1996.
M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT-solver. In Proc. of the Design Automation Conf., 2001.

M. Prasad, P. Chong, and K. Keutzer. Why is ATPG easy? In Proc. of the Design
Automation Conf., 1999.

H. Roehrig. Tree Decomposition: A Feasibility Study. M.S. Thesis, Max-Planck-
Instit. Inform. Saarbruecken, 1998.

D. Rose. Triangulated Graphs and the Elimination Process. J. of Discrete Math-
ematics, 7:317-322, 1974.

D. Rose and R. Tarjan. Algorithmic Aspects of Vertex Elimination on Directed
Graphs. SIAM J. Appl. Math., 34(1):176 197, 1978.

L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in a boolean satisfiability solver. In Proc. Intl. Conf. on Computer-Aided
Design, 2001.

L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In
Proc. of the Computer Aided Verification Conf., 2002.

