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Abstract. Binary Decision Diagrams (BDDs) have dominated the area
of symbolic model checking for the past decade. Recently, the use of
satisfiability (SAT) solvers has emerged as an interesting complement
to BDDs. SAT-based methods are capable of coping with some of the
systems that BDDs are unable to handle.

The most challenging problem that has to be solved in order to adapt
standard symbolic model checking to SAT-solvers is the boolean quan-
tification necessary for traversing the state space. A possible approach
to extending the applicability of SAT-based model checkers is therefore
to reduce the amount of traversal.

In this paper, we investigate a BDD-based verification algorithm due
to van Eijk. Van Eijk’s algorithm tries to compute information that is
sufficient to prove a given safety property directly. When this is not
possible, the computed information can be used to reduce the amount of
traversal needed by standard model checking algorithms. We convert van
Eijk’s algorithm to use a SAT-solver instead of BDDs. We also make a
number of improvements to the original algorithm, such as combining it
with recently developed variants of induction. The result is a collection
of substantially strengthened and complete verification methods that do
not require state space traversal.

1 Introduction

Symbolic model checking based on satisfiability (SAT) solvers [2,1,15,12] has
recently emerged as an interesting complement to model checking with Binary
Decision Diagrams (BDDs) [3]. There are a number of systems which are not
suited to be effectively verified using BDD-based model checkers, but can be
verified using SAT-based methods. The use of SAT-solvers rather than BDDs also
has advantages such as freeing the user from providing good variable orderings,
and making the number of variables in the system less of a bottleneck. However,
the boolean quantification that is necessary for computing characterisations for
sets of predecessors (and successors) of states can sometimes lead to excessively
large formulas in SAT adaptions of standard model checking algorithms.



In the hope of alleviating these problems, we investigate a BDD-based algorithm
due to van Eijk [6] that attempts to verify safety properties of circuits without
performing state-space traversal. The main idea behind the algorithm is to use
induction to cheaply compute points in the circuit that always have the same
value (or always have opposite values) in the reachable state space. This infor-
mation sometimes directly implies the safety properties. If such a direct proof is
not possible, the computed information can be used to decrease the number of
necessary fixpoint iterations in backwards reachability algorithms. Van Eijk [6]
has used the algorithm to directly prove equivalence between the original circuits
and synthesised and optimised versions of 24 of the 26 circuits in the ISCAS’89
benchmark suite.

We are specifically interested in using van Eijk’s algorithm to prove safety prop-
erties of circuits that are hard to represent using BDDs. Also, when a direct
proof is not possible, we want to use the computed information to reduce the
amount of state space traversal in exact SAT-based model checking methods
as this could decrease the amount of necessary quantification drastically. As a
consequence, we want to find alternatives to the use of BDDs in the original
analysis. Van Eijk’s algorithm also has the drawback of always computing the
largest possible set of equivalences, even when this is not needed for the verifi-
cation of the particular safety property at hand. In some cases this can become
too costly; we would therefore like to be able to control how much work we put
into finding equivalences.

We solve the two problems by converting the algorithm to use propositional for-
mulas to represent points in the circuit, and by applying Stalmarck’s saturation
algorithm [14, 13] rather than BDDs for discovering equivalences between points.

The resulting algorithm is generalised in three ways. First, we make the algorithm
complete by changing the induction scheme that is used in the method to some
recently developed stronger variants of induction [12]. Second, we modify the
algorithm to also discover implications between points in the circuit. Third, we
demonstrate that van Eijk’s algorithm can be viewed as an approximate forwards
reachability analysis, and use this insight to construct the dual approximate
backwards reachability algorithm and a mutual improvement algorithm.

The information that is computed by the resulting algorithms can in principle be
used together with any BDD- or SAT-based model checking method. We show
some benchmarks that demonstrate that the methods on their own can be very
powerful tools for checking safety properties. For example, we use the algorithms
to verify a non-trivial industrial example that previously has been out of reach
for the SAT-based model checker FixIt [1].

2 Van Eijk’s method: finding equivalence classes

In this section, we describe van Eijk’s method [6]. In the original paper it is pre-
sented as a method for equivalence checking of sequential synchronous circuits.



However, while using the method we have observed that it can work well also
for general safety property verification.

Basic idea. The idea behind van Eijk’s algorithm is to find the points in the
circuit which have the same value (or have opposite values) in all reachable
states. This information can then be used to either directly prove the safety
property or to strengthen other verification methods.

The information is represented as an equivalence relation over the points of the
circuit and their negations. The algorithm computes such an equivalence relation
by means of a fixed point iteration. It starts with the equivalence relation that
necessarily holds between the points in the initial state. Then it improves the
relation by assuming that the equivalences hold at one time instance and deriving
the subset of these equivalences that must hold in the next time instance. After
a number of consecutive improvements, a fixed point is reached. The resulting
equivalence relation is satisfied by the initial states, and is moreover preserved
by any circuit transition. Therefore, it must hold in all reachable states.

Before we give a more precise description of van Eijk’s algorithm, we first intro-
duce some definitions.

Formulas. We describe the systems we are dealing with using propositional
logic formulas. These are syntactic objects, built from variables like z and y,
boolean values 1 and 0, and connectives =, A, V, =, and <. We say that a
formula is walid if and only if it evaluates to 1 for all variable assignments under
the usual interpretation of the connectives.

State machines. We represent sequential synchronous circuits as state ma-
chines in the standard way [4], where the set of states is the set of boolean
valuations of a vector s of variables; one variable for each input and internal
latch. As we do not restrict the input part of the states, these state machines
are non-deterministic. The standard representation also guarantees that every
state has at least one outgoing transition.

We characterise the set, of initial states and the transition relation of the state
machine by the propositional logic formulas Init(s) and Trans(s, s'), respectively.
In other words, Init(s) is satisfied exactly by the initial states, and Trans(s,s')
is satisfied precisely when there is a transition between the states s and s’. The

safety property of the system we want to verify is represented by the formula
Prop(s).

Ezample 1. Assume that we want to decide whether the two subcircuits
in Figure 1 are equivalent. This amounts to checking whether the signal
p is always true. Let us construct the necessary formulas. There are four
state variables—one for every input and one for every delay component—
so s = (x,dy,ds,ds). Since the delay components have an initial value of
0, the formula for the initial states becomes:

|nit(fli,d1,d2,d3) = =dy A —dsy A —dg
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Fig. 1. An example circuit

Looking at the logic contained in the circuit, we can write down the
formula for the transition relation:

Trans(z,dy,da, dg, o', dy, dy, dy) =
(d) © —(dy Ady)) A (dy & —xz) A (dy & —(xVd3))

Lastly, we define the formula for the property p:

Prop(z,di,d2,d3) = (di Ad2Ax) & (d3 Aw)

Signals. Given the formulas that characterise a state machine, we define the
set Signals that models the points in the circuit. The elements of Signals are
functions taking state variable vectors to formulas instantiated with these vari-
ables. Specifically, for every subformula f(s) of the system formulas Trans(s, s')
and Prop(s), such that f(s) is not dependent on any of the variables of s', we
add the corresponding functions f and —f to the set. Moreover, we also add the
constant signals tt and ff, for which tt(s) = 1 and ff(s) = 0.

Ezxzample 2. fi is asignal in Figure 1 with the definition fi (z,d1,ds, ds) =
di A dy. The negated signal —f has the definition —f; (x,d;,ds,d3) =
=(di A da).

Signal correspondence. For a given equivalence relation = over the set
Signals, we define the signal correspondence condition, denoted by Holds(=, s)
as follows:

Holds(=,s) = /\ f(s) & g(s).
f=g

This means that the correspondence condition for an equivalence relation is
satisfied by a state when all the signals that are equivalent have the same value in



that state. We define a signal correspondence relation as an equivalence relation
whose correspondence condition holds in all reachable states.

Algorithm. In order to find a signal correspondence relation, van Eijk’s al-
gorithm computes a sequence of equivalence relations =;, each being a better
overapproximation of the desired relation. The sequence stops when an n is found
such that =, is equal to =,,41.

The first approximation = is the equivalence relation that holds in the initial
states. We can define it as follows; for all f and g, f =g ¢ if and only if the
following formula is valid:

|nit(S]) = f(S]) @g(S])

This means that two signals are equivalent precisely if they must have the same
value in all initial states. The original algorithm computes =y by constructing a
BDD for every signal, and pairwise comparing these BDDs under the assumption
that the BDD for Init(s) holds.

The other approximations =,41 for n > 0 are subsets of =,. We can define
them as follows; for all f and g, f =,,+1 ¢ if and only if f =,, g and the following
formula is valid:

Holds(=,, s1) A Trans(s1,s2) = f(s2) © g(s2).

This means that two signals are equivalent in the new relation, when (1) they
were equivalent in the old relation and (2) they have the same value in the
next state if the old relation holds in the current state. The original algorithm
computes =,41 by pairwise comparison of the BDDs for the signals related by
=,, under the assumption that the BDD for =, holds.

The construction of approximations =; has the shape of an inductive argument;
it has a base case and a step that is iterated until it is provable. The final signal
correspondence relation therefore holds in all reachable states.

For a schematic overview of the algorithm, see Figure 2. At lines 5 and 12, we
use the function VALIDBDD that checks if a formula is valid by building its BDD.
At lines 6 and 13, we use set to modify an equivalence relation by merging the
equivalence classes for f and g.

Ezample 1 (ctd.). The signal correspondence relation found by the algo-
rithm for Example 1 looks as follows:

{--, (fi,d3), (f2, f3), (p,tt), ... }

From this information it follows immediately that the property p is al-
ways true.

! Note that this is a slight generalisation of van Eijk’s original definition [6].



1. =1,=2:=0,0;

2.  —— compute first approzimation

3. for every f,g in Signals do

4. form := Init(s1) = (f(s1) < g(s1)) ;

5. if (vaLiDBDD(form)) then

6. set f=29;

7. —— iterate until a fized point is reached

8. while (=1#=2) do

9. =1,=2 = Eg,w H

10. for every f, g in Signals such that f =; g do
11. form := Holds(=1, s1) A Trans(s1, s2) = (f(s2) © g(s2)) ;
12. if (vALIDBDD(form)) then

13. set f =2 ¢ ;

14. return =; ;

Fig. 2. Van Eijk’s algorithm

Remarks. The signal correspondence relation found by the algorithm some-
times implies the safety property directly. If this is not the case, then we can
strengthen the transition formula Trans(s,s’) to a new formula Trans(s,s’) A
Holds(=, s)A Holds(=, s'). This is legal as we only are interested in transitions in
the reachable state space. The new transition formula relates fewer states, and
can consequently reduce the number of fixpoint iterations in conventional model
checking methods.

Van Eijk’s original paper presents a number of improvements of the basic method,
such as retiming techniques that enlarge the set Signals so that the equivalence re-
lation can contain more information, and random simulation that aims to reduce
the number of pairwise comparisons by computing a better initial approximation
=(. We will not discuss these techniques here, but refer to the original paper [6].

3 Stalmarck’s method instead of BDDs

Van Eijk’s method has a number of disadvantages. First of all, sometimes it is
impossible to complete the analysis as some signals in the circuit can not be
represented succinctly as BDDs. Second, the algorithm always finds the largest
equivalence relation, which can be unnecessarily costly for proving the property.
Third, the equivalences are computed by pairwise comparisons of signals, which
means we have to build a quadratic number of BDDs. We will now focus on
trying to solve these problems by using a SAT method instead of BDDs.

Stalmarck’s method. Stalmarck’s saturation method [14,13] is a patented al-
gorithm that is used for satisfiability checking. The method has been successfully
applied in an wide range of industrial formal verification applications. The algo-
rithm takes a set of formulas {p1,...,p,} as input, and produces an equivalence
relation over the negated and unnegated subformulas of all p;. Two subformu-
las are equivalent according to the resulting relation only when this is a logical



consequence of assuming that all formulas p; are true. The algorithm computes
the relation by carefully propagating information according to the structure of
the formulas.

The saturation algorithm is parameterised by a natural number k, the saturation
level, which controls the complexity of the propagation procedure. The worst-
case time complexity of the algorithm is O(n?**1) in the size n of the formulas,
so that for a given k, the algorithm runs in polynomial time and space. For any
specific k, there are formulas for which not all possible equivalences are found,
but for every formula there is a k such that the algorithm finds all equivalences.
A fortunate property is that this k is surprisingly low (usually 1 or 2) for many
practical applications, even for extremely large formulas.

The advantage of having control over the saturation level is that the user can
make a trade-off between the running time and the amount of information that
is found. A disadvantage is that it is not always clear what k to choose in order
to find enough information. In contrast, finding equivalences using BDDs results
in discovering either all information, or no information at all due to excessive
time and space usage.

Modification of van Eijk’s method. We now adapt van Eijk’s algorithm to
use Stalmarck’s method.

To compute the initial approximation =g, we use the saturation procedure to
compute equivalence information between positive and negative subformulas of
Init(s1) and Holds(ld, s1) under the assumption that both of the these formulas
are true. Here, Id denotes the identity equivalence relation on signals, relating
f to g if and only if f = g. Note that Holds(ld,s;) is a valid formula, so as-
suming that it is true adds no real information; we just add it to the system to
ensure that all subformulas that correspond to signals are present in the result-
ing equivalence relation. We then use the resulting information to generate the
equivalence relation =g on signals.

To improve a relation =,,, we run the saturation procedure on a set of formulas
that contains Holds(=1, s1), Trans(s, s2), and Holds(ld, s2). Again, we need the
formula Holds(ld, s2) to ensure that all subformulas that correspond to signals
are present. From the result we extract =,,;1 by looking at the equivalences be-
tween subformulas depending on s», and taking the intersection with the original
equivalence relation =,,. The intersection of two equivalence relations relates two
signals if both original relations relate them.

For a schematic overview of our algorithm, see Figure 3. The notation = /sy,
occuring at lines 4 and 10, turns an equivalence relation = on formulas into an
equivalence relation on signals, by relating two signals f and ¢ if and only if
their instantiated formulas f(s;) and g(s;1) are related by =.

In our modified algorithm, we have explicit control over the running time com-
plexity of each iteration step; each step is guaranteed to take polynomial time
and space. As a consequence, we do not have to worry about a possible expo-
nential space blowup, as in the case of building BDDs. However, having this



1. = =0,

2.  —— compute first approzimation

3. system := {Init(s1),Holds(ld, s1)} ;

4. = 1= STALMARCK(system) / s ;
5. —— iterate until a fized point is reached
6. while (=1#=,) do

7. =1 = =2

8. system := {Holds(=1, s1), Trans(s1, s2), Holds(ld, s2)} ;
9. = := STALMARCK (system) ;
10. =, = =1 N(=/s2);

11. return =; ;

Fig. 3. Van Eijk’s algorithm using Stalmarck’s method

explicit control also means that we do not always compute the largest relation,
since the saturation algorithm is possibly incomplete depending on what k& we
have chosen. In many cases it turns out that even for small &, the equivalence
relation we compute using Stalmarck’s algorithm is still large enough to decide if
the property is true or not, or to considerably reduce the number of subsequent
model checking iterations.

Signal implications. Finding equivalences between signals is a rather arbitrary
choice. We could just as well try to find other information about signals that is
easy to compute. For example, we can compute implications between signals.

An implication f = g occurs between two signals f and g, if g must be true
whenever f is true. The implications over the set of signals are interesting as
they can capture all binary relations. The reason for this is that any formula that
contains two variables can be characterised by a finite number of implications
between these variables, their negations, and constants.

The presented algorithm can easily be extended to find implications between the
computed equivalence classes of signals. Note that implications within equiva-
lence classes do not give any information, since we know that every point in an
equivalence class implies every other point in the same class. Qur approach for
generating the implications is simple: To begin with, we generate all the equiv-
alence classes that hold over the reachable state space using the algorithm in
Figure 3. From each equivalence class we take a representative signal. Finally,
we run a modified version of the algorithm in Figure 3, that uses induction to
find implications rather than equivalences between the representatives.

4 Induction

In order to further improve our adaptions of van Eijk’s method, we start by
investigating another safety property verification method: induction [12].



Simple induction. The idea behind simple induction is to attempt to decide
whether all reachable states of the described system make the formula Prop(s)
true by proving that the property holds at the initial states, and proving that if
it holds in a certain state, it also holds in the next state. The inductive proof is
expressible in propositional logic using the following two formulas:

Init(s1) = Prop(s1)
Prop(s1) A Trans(s1,s2) = Prop(ss)

If the first formula is valid, we know that all the initial states of the system make
the property true. If the second formula is valid, we know that any time a state
makes the property true, all states reachable in one step from that state also
make the property true. We can thus infer that all reachable states are safe.

Simple induction is not a complete proof technique for safety properties; it is
easy to construct a system whose reachable states all make Prop(s) true, but for
which the inductive proof fails. Just take a safe system and change it by adding
two unreachable states s; and s, in such a way that there is a transition between
s1 and sq, the formula Prop(s;) is true, and Prop(ss) is false. This system can
not give a provable induction step even though all reachable states satisfy the
property. A stronger proof scheme is needed for completeness.

Induction with depth. In the step case of simple induction we prove that
the property holds in the current state, assuming that it holds in the previous
state. One way to strengthen the induction step is to instead assume that the
property holds in the previous n consecutive states. Correspondingly, the base
case becomes more demanding.

Let Trans™(s1, ..., s,) be the formula that expresses that si,. .., s, are states on
a path s1,...,8,, and let Prop*(s1,...,s,) be the formula that expresses that
Prop is true in all of the states si,...,s,. Induction with depth n amounts to

proving that the following formulas are valid:

Init(s1) A Trans®(s1, ..., sn) = Prop™(s1,...,sn)
Prop*(s1,...,8n) A Trans™(s1, ..., 8p41) = Prop(s,41)

The modified base case expresses that all states on a path with n states starting
in the initial states make the property true. The step says that if s;...s,41 is
a path where s; ...s, all make Prop true, then s,;; also makes Prop true. We
henceforth refer to n as the induction depth. Note that induction with depth 1
is just simple induction.

Unique states induction. The induction scheme with depth discovers paths
to any state s in the reachable state space that makes Prop(s) false: A path
with n states starting from the initial states and ending in a bad state is a
counterexample to base cases of depth n or larger. As we are verifying finite
systems, some depth n is therefore sufficient to discover all bugs.

Unfortunately the scheme is still not complete; it is possible to construct a safe
system where the induction step fails for any depth n. Just take any safe system



and change it by adding two unreachable states s; and s», so that the property
holds in sy, s; can both reach itself and ss, and the property fails in s5. Then
there exist a counterexample for every depth n that loops » — 1 times in sy, and
then visits ss.

However, a state that is reachable from the initial states must be reachable
by at least one path that only contains unique states. Therefore, we can add
a formula Uniq(sy,...,s,) to the induction step that expresses that sq,..., s,
are different from each other. This restriction on the shape of considered paths
makes it impossible to generate counterexamples of arbitrary length from loops
in the unreachable state space. The induction step now becomes:

Prop™(s1,...,8n) A Trans™(s1, ..., 8n11) AUniq(s1,...,8,41) = Prop(sps1)

The result is a complete scheme for verifying safety properties of finite systems:
If there are paths in the unreachable state space that falsely make the induction
step unprovable, they are ruled out from consideration by some induction depth
n. However, a major problem is that this n» can be extremely large for some
verification problems, and that it is often difficult to predict what n is needed.

5 Stronger induction in van Eijk’s method

We will now make use of the insight into induction methods we gained in the
previous section. The underlying proof method that van Eijk’s algorithm uses to
find equivalences that always hold in the reachable state space is simple induc-
tion. Recall that we have demonstrated that this proof technique is too weak to
prove all properties that hold globally in the reachable states. Consequently there
are circuits that contain useful equivalences that van Eijk’s original algorithm
misses due to the incompleteness of its underlying proof method.

Generalisation to completeness. We can make van Eijk’s original algorithm
complete by modifying our implementation to use unique states induction with
depth n rather than simple induction. In the base case of the algorithm, we
compute an equivalence relation on signals that hold in the first n states on paths
from the initial states. In the algorithm step, we assume that our most recently
computed signal equivalence relation holds in the first n of n + 1 consecutive
unique states, and derive the subset of the signal equivalences that necessarily
holds in state n + 1.

For a detailed description of the resulting algorithm, see Figure 4. We use the
notation Holds*(=,s1,...,s,), occuring at lines 3 and 9, as a shorthand for
Holds(=, s1) A--- AHolds(=, s,,). The algorithm for finding implications between
signals is modified in an analogous way.

We can now discover all equivalences that hold globally in the state space. In par-
ticular, if a safety property holds in all reachable states, there exists a saturation
level and an induction depth that is sufficient to discover that the corresponding
signal is equivalent to the true signal.



1. = =0

2.  —— compute first approzimation

3. system := {Init(s1), Trans™(s1,..., sn),Holds*(Id, s1,...,5n)} ;

4 = := STALMARCK(system) ;

5. =2 = (=/s1) N ... N (= /sr);

6. —— iterate until a fized point is reached

7. while (=:#=,) do

8. =1 = =2

9. system := {Holds™ (=1, s1,...,5n), Trans*(s1,..., Snt1),
Holds(ld, sn+1), Unig(s1,...,Sn+1)} ;

10. = := STALMARCK (system) ;

11. (=2) == N(= /sn+1) ;

12. return =i ;

Fig. 4. The adaption of the algorithm for depth n unique states induction

As an additional benefit, the possibility to adjust both the saturation level and
the induction depth allows a high degree of control over how much work is spent
on discovering equivalences. We can now increase the number of equivalences
that can be discovered for a fixed saturation level by increasing the induction
depth; this can be useful as an increase in saturation level means a big change
in the time complexity of the algorithm.

We note that the idea of using stronger induction not is restricted to our SAT-
based version of van Eijk’s algorithm; the original BDD-based algorithm can
also be made complete by stronger induction.

6 Approximations

In this section we show that van Eijk’s algorithm is an approzimative forwards
reachability analysis. We then use this insight to derive an analogous backwards
approximative analysis, and combine the two algorithms into a mutual improve-
ment algorithm.

The forwards reachability view. Figure 5 shows the shape of a standard
forwards reachability analysis, where we use INIT to denote the set of initial
states, and the operation POSTIMAGE to compute postimages (the postimage of
a set of states S is the set of states that can be reached from S in one transition).
We now demonstrate that van Eijk’s algorithm performs such a forwards analysis
approximatively, in the sense that it is a variant of the standard analysis where
INIT has been replaced with an overapproximation, and the exact operations U
and POSTIMAGE have been replaced by overapproximative operators.

Van Eijk’s algorithm computes a sequence of relations =;. Each of the corre-
sponding formulas Holds(=;,s) can be seen as the characterisation of a set of
states A;.



. until (Sp41 # Sy)

. return S,41 ;

1. n,So := 0,INIT;

2. loop

3. Snt+1 1= POSTIMAGE(S,) U S, ;
4. n i=n+1;

5

6

Fig. 5. A standard forwards reachability algorithm

In the base case, the algorithm computes the binary relation =g that holds
between points in all the initial states. The formula Holds(=g, s) will therefore
be valid for every state s that makes Init(s) valid, and possibly for some other
states. Ag is consequently a superset of the initial states.

In the step, the algorithm computes the subrelation =,11 of =, that provably
holds after a transition under the assumption that =, holds before the transi-
tion. Every state s that is reachable in one transition from a state in A,, therefore
makes Holds(=,,11, s) valid. But =,,41 is a subrelation of =,,, so every state s in
A, also satisfies Holds(=,11, s). Consequently, the step operation corresponds
to computing A, 1 as the overapproximative union of 4,, and the overapproxi-
mative postimage of A4,.

Finally, the algorithm checks whether =, is the same relation as =,,. This
corresponds to checking whether A, 1, = A,. If this is the case, the algorithm
terminates, otherwise the step is iterated.

Approximative backward analysis. It is well known that forwards reacha-
bility analysis has a dual analysis called backwards reachability analysis [4]. We
can perform the backward analysis using the forwards algorithm by modifying
the characterisation of the underlying system in the following way:

Init’ (s) = —Prop(s)
Trans'(s, s') = Trans(s', s)

Prop’(s) = =Init(s)

The result of the computation is the set of states that are backwards reachable
from the bad states the states where the property does not hold.

We can use the system transformation together with any of our variants of van
Eijk’s algorithm. In particular, we can compute a relation = that characterises
an overapproximation of the states that are backwards reachable from the states
that make Prop(s) false. Analogously to the forwards algorithm, the system is
safe if Holds(=, s) implies the safety property, which in this case corresponds to
that no initial state is in the overapproximation of the set that can be backwards
reached from the bad states. Also, if we do intersect the initial states, we can
still use the approximation to constrain the transition relation in order to reduce
the number of necessary iterations of an exact forwards reachability algorithm.



Mutual improvement. The new approximate backward algorithms can be
very useful on their own. However, there exists a general way of enhancing ap-
proximative reachability analyses that improves matters further [8].

The idea is to first generate the overapproximation of the reachable states. If the
corresponding set has an empty intersection with the bad states, we are done.
If it has an nonempty intersection, there are two possible reasons: Either the
system is unsafe, or the approximation is too coarse. Regardless of which is the
case, we know that the only possible bad states we can reach are those that are
contained in the intersection. We can therefore take the intersection to be our
new bad states.

But now we can apply approximate backwards reachability analysis from the new
bad states. If we do not intersect the initial states, the system must be safe. If we
do, we can take the intersection to be the new initial states and restart the whole
process. The algorithm terminates if we generate the same overapproximations
twice, as this implies that no further improvement is possible.

The resulting mutually improved overapproximations are always at least as good
as the original overapproximations, and they can sometimes be substantially
better as we demonstrate in the next section.

7 Experimental results

In this section, we present a number of experiments we have done using a pro-
totype implementation of our variants of van Eijk’s algorithm. We compare our
results against the results of three other methods. The first two are reachability
analysis and unique states induction, as implemented in the SAT-based model
checking workbench FixIt [1]. The third method is BDD-based model checking,
as implemented in the verification tool VIS version 1.3. In the experiments with
VIS we have used dynamic variable reordering and experimented with different
partitionings.? All running times are measured on a 296 MHz Ultrasparc-IT with
512 MB memory. The results are displayed in Table 1.

The motivation for the choice of benchmarks is as follows. We have chosen one
industrial example, one example that is difficult to represent with BDDs, and
one example that belongs to the easy category for BDDs.

The Lalita example. The Lalita example is an industrial telecommunications
example from Lucent Technologies that was one of the motivations for the re-
search presented in this paper. We received the example as a challenge from
Prover Technology, a Swedish formal verification company. It was given to us
as a black-box problem; we had no information about the structure of the sys-
tem. The design was already known to be within reach of BDD technology, but
not all of the properties were possible to verify using unique states induction.

2 We have also tried approximate model checking in VIS, but there appears to be a
bug in the implementation which makes it unsound.



Property FixIt FixIt VIS Our

Reach. Induct. Method

Lalita, nr. 2 0.3 0.2 219.9 2.3%

7 41.8 0.2 207.3 2.2¢

10 [>15min] [>15min] 86.6 9.7°

11 [>15min] [>15min] 199.3 2.1¢

Butterfly, size 2 0.1 1.0 0.3 0.1¢
4 16.6 [>15min] 2.0 0.17

16 [>15min] — [>15min] 1.4°

64 — — — 37.4%

Arbiter 2.5 [>15min] 2.1 76.9¢

? with equivalences, b with mutual improvement, © with implications

Table 1. Experimental results (times are in seconds).

When we attempted to verify the design using SAT-based reachability analysis,
the representations became excessively large due to the computation of pre- and
postimages.

The design contains 178 latches. The problem comes with thirteen safety prop-
erties that should be verified; we present the four most interesting properties:
the two properties that were most difficult for VIS (2 and 7), one of the two
properties that are hard for induction (11), and the property that was hardest
for our methods (10).

All of the properties except property 10 and 11 can be done using SAT-based
induction. However, we can verify or refute every property except property 10
directly using our forwards equivalence algorithm. Property 10 is verified us-
ing one iteration of mutual improvement of the computed equivalences. As the
table demonstrates our analyses are a factor 10 to 100 faster than BDD-based
verification in VIS.

The butterfly circuits. This family of benchmarks arose when we were design-
ing sorting circuits for implementation on an FPGA. The problem is to decide
whether a butterfly network containing reconfigurable sequential components
is equivalent to an optimised version where the components have been shifted
around. When we attempted to verify the circuits we discovered that standard
algorithms could not handle circuits of any reasonable size. In particular, BDD-
based methods did not work because the BDDs representing the circuits became
too large.

The model checking algorithms in VIS are unable to verify larger networks than
size 4 in a reasonable amount of time and space. SAT-based reachability analy-
sis and induction are also unable to cope with larger instances of the circuits.
However, the forwards equivalence algorithm handles all the sizes we have tried
in less than 40 seconds.



The arbiter. This example is a simple benchmark from the VIS distribution.
The arbiter controls three clients that compete for bus access. We verify the
property of mutual exclusion.

The problem is easy both for BDDs and SAT-based symbolic reachability ana-
lysis, but can not be done using unique states induction. The example clearly
demonstrates that finding implications between equivalence classes can be stronger
than only computing equivalences: Our equivalence based analysis alone is un-
able to verify the design in a reasonable amount of time, but we can verify the
design in 77 seconds by computing implications between the equivalence classes.

8 Related work

The first approach in the literature to apply SAT-based techniques to model
checking was Bounded Model Checking [2]. Bounded model checking of safety
properties corresponds to searching for bugs by attempting to prove the base
case only of induction with depth. Certain bugs that are hard to find using
BDD-based model checking can be found very quickly in this way. In order to
effectively also prove safety of systems, standard symbolic reachability analysis
was adapted to use SAT-solvers [1] which resulted in the analysis implemented in
FixIt. Currently, interesting work is being done on combinations of SAT-solvers
and BDDs for model checking [15].

The idea to use approximate analyses to generate semantic information from
systems originally comes from the field of program analysis. Many different such
analyses can be seen as abstract interpretations [5]. In particular, Halbwachs et
al. [8,10] have used abstract interpretation techniques to generate linear con-
straints between arithmetic variables that always holds in the reachable state
space of synchronous programs and timed automata. This information is used
both for compilation purposes and for verification. The same techniques are used
for generating strengthenings in the STeP system [11] that is targeted towards
deductive verification of reactive programs.

The main differences between our work and the work on synchronous programs
and STeP, is (1) that the analyses we present here are specially designed for
generating information about gate level circuits rather than programs, (2) that
we focus specifically on simple relations between boolean signals, and (3) that
we use Stalmarck’s saturation method as a possibly incomplete but fast method
for generating the relations. Also, we generate information while keeping in mind
that we can apply an exact analysis later, and we have consequently optimised
the algorithms for quickly generating information. In the case of synchronous
program verification and STeP, a precise analysis is not even possible in general
as infinite state systems are addressed.

Dill and Govindaraju [7] have developed a method for performing BDD-based
approximate symbolic model checking based on overlapping projections. Their
idea is to alleviate BDD blow-up by representing an overapproximation of a



set of states S as a vector of BDDs, where each individual BDD characterises
the relation in S between some subset of the state variables. The conjunction
of the BDDs represents an overapproximation of the underlying set. The main
difference between our approach and theirs, is that we consider some particular
relations between all pairs of signals, while they consider all relations between
a number of subsets of state variables. Also, the user of Dill and Govindaraju’s
method must manually choose the subsets of state variables to build BDDs for,
whereas our methods are fully automatic.

9 Conclusions and Future Work

We have taken an existing BDD-based verification method which finds equivalent
points in a circuit, and adapted it to use Stalmarck’s method instead of BDDs.
Then, we strengthened the resulting algorithm by combining it with recently
developed induction techniques. We also discussed how the algorithm can be
improved by computing implications rather than simple equivalences between
points. Lastly, we observed that the algorithm can be transformed into a mutual
improvement approximative reachability analysis.

The resulting collection of new algorithms can be seen as SAT-based improve-
ments of van Eijk’s original algorithm, where we use stronger inductive methods.
Viewed from this angle, we have made van FEijk’s method complete and provided
a more fine-grained tuning between the time used and the information found.

Viewing our work in a different way, we can say that we have improved an
inductive method by using van Eijk’s algorithm to find equivalences. In some
cases, such as the butterfly examples (see Section 7), unique states induction
needs an exponentially larger induction depth than our improved analyses.

We believe the proposed methods work well for several reasons. First of all, van
Eijk’s original idea of finding equivalences of points in the circuit makes it very
hard for properties to “hide” deep down in the logic of a circuit. Comparing this
with problems occurring with methods that only look at state variables (such as
conventional model checking methods) or methods that only look at the outputs
(such as inductive methods) clearly shows that this is a desirable thing to do.

Second, the use of Stalmarck’s saturation algorithm forms a natural fit with van
Eijk’s original algorithm. The possibility of controlling the saturation level pays
off especially in systems where it is hard to find all equivalences, but sufficient to
find some. Stalmarck’s algorithm is also rather robust in the number of variables
used in formulas.

Third, inductive methods perform well because they do not need any iteration or
complicated quantification. Unfortunately, when we prove partial properties of
systems, or when we prove properties about systems with a lot of logic between
the latches and the property, induction performs poorly because the induction
hypothesis is not strong enough to establish the inductive step. In this case,



finding equivalence or implication information is just the right thing to do, be-
cause it strengthens the induction hypothesis, and provides direct information
not only about the latches, but about all points in the circuit.

For future work, we would like to investigate other signal relations than equiv-
alences and implications. General relations over three variables is a candidate,
although it is not clear how to represent the found information. Furthermore,
we are interested in extending the proposed algorithms to work with other prop-
erties than just safety properties. Lastly, we would like to extend the presented
ideas to the verification of safety properties of synchronous reactive systems; for
example, systems implemented in the programming language Lustre [9]. In order
to do this, we need to add support for integer arithmetic and to investigate how
Halbwachs’s ideas [8] can be combined with our analyses.
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