
SAT-based Veri�cationwithout State Space TraversalPer Bjesse and Koen ClaessenDepartment of Computing ScienceChalmers University of Technology412 96 G�oteborgfbjesse, koeng@cs.chalmers.seAbstract. Binary Decision Diagrams (BDDs) have dominated the areaof symbolic model checking for the past decade. Recently, the use ofsatis�ability (SAT) solvers has emerged as an interesting complementto BDDs. SAT-based methods are capable of coping with some of thesystems that BDDs are unable to handle.The most challenging problem that has to be solved in order to adaptstandard symbolic model checking to SAT-solvers is the boolean quan-ti�cation necessary for traversing the state space. A possible approachto extending the applicability of SAT-based model checkers is thereforeto reduce the amount of traversal.In this paper, we investigate a BDD-based veri�cation algorithm dueto van Eijk. Van Eijk's algorithm tries to compute information that issu�cient to prove a given safety property directly. When this is notpossible, the computed information can be used to reduce the amount oftraversal needed by standard model checking algorithms. We convert vanEijk's algorithm to use a SAT-solver instead of BDDs. We also make anumber of improvements to the original algorithm, such as combining itwith recently developed variants of induction. The result is a collectionof substantially strengthened and complete veri�cation methods that donot require state space traversal.1 IntroductionSymbolic model checking based on satis�ability (SAT) solvers [2, 1, 15, 12] hasrecently emerged as an interesting complement to model checking with BinaryDecision Diagrams (BDDs) [3]. There are a number of systems which are notsuited to be e�ectively veri�ed using BDD-based model checkers, but can beveri�ed using SAT-based methods. The use of SAT-solvers rather than BDDs alsohas advantages such as freeing the user from providing good variable orderings,and making the number of variables in the system less of a bottleneck. However,the boolean quanti�cation that is necessary for computing characterisations forsets of predecessors (and successors) of states can sometimes lead to excessivelylarge formulas in SAT adaptions of standard model checking algorithms.



In the hope of alleviating these problems, we investigate a BDD-based algorithmdue to van Eijk [6] that attempts to verify safety properties of circuits withoutperforming state-space traversal. The main idea behind the algorithm is to useinduction to cheaply compute points in the circuit that always have the samevalue (or always have opposite values) in the reachable state space. This infor-mation sometimes directly implies the safety properties. If such a direct proof isnot possible, the computed information can be used to decrease the number ofnecessary �xpoint iterations in backwards reachability algorithms. Van Eijk [6]has used the algorithm to directly prove equivalence between the original circuitsand synthesised and optimised versions of 24 of the 26 circuits in the ISCAS'89benchmark suite.We are speci�cally interested in using van Eijk's algorithm to prove safety prop-erties of circuits that are hard to represent using BDDs. Also, when a directproof is not possible, we want to use the computed information to reduce theamount of state space traversal in exact SAT-based model checking methodsas this could decrease the amount of necessary quanti�cation drastically. As aconsequence, we want to �nd alternatives to the use of BDDs in the originalanalysis. Van Eijk's algorithm also has the drawback of always computing thelargest possible set of equivalences, even when this is not needed for the veri�-cation of the particular safety property at hand. In some cases this can becometoo costly; we would therefore like to be able to control how much work we putinto �nding equivalences.We solve the two problems by converting the algorithm to use propositional for-mulas to represent points in the circuit, and by applying St�almarck's saturationalgorithm [14, 13] rather than BDDs for discovering equivalences between points.The resulting algorithm is generalised in three ways. First, we make the algorithmcomplete by changing the induction scheme that is used in the method to somerecently developed stronger variants of induction [12]. Second, we modify thealgorithm to also discover implications between points in the circuit. Third, wedemonstrate that van Eijk's algorithm can be viewed as an approximate forwardsreachability analysis, and use this insight to construct the dual approximatebackwards reachability algorithm and a mutual improvement algorithm.The information that is computed by the resulting algorithms can in principle beused together with any BDD- or SAT-based model checking method. We showsome benchmarks that demonstrate that the methods on their own can be verypowerful tools for checking safety properties. For example, we use the algorithmsto verify a non-trivial industrial example that previously has been out of reachfor the SAT-based model checker FixIt [1].2 Van Eijk's method: �nding equivalence classesIn this section, we describe van Eijk's method [6]. In the original paper it is pre-sented as a method for equivalence checking of sequential synchronous circuits.



However, while using the method we have observed that it can work well alsofor general safety property veri�cation.Basic idea. The idea behind van Eijk's algorithm is to �nd the points in thecircuit which have the same value (or have opposite values) in all reachablestates. This information can then be used to either directly prove the safetyproperty or to strengthen other veri�cation methods.The information is represented as an equivalence relation over the points of thecircuit and their negations. The algorithm computes such an equivalence relationby means of a �xed point iteration. It starts with the equivalence relation thatnecessarily holds between the points in the initial state. Then it improves therelation by assuming that the equivalences hold at one time instance and derivingthe subset of these equivalences that must hold in the next time instance. Aftera number of consecutive improvements, a �xed point is reached. The resultingequivalence relation is satis�ed by the initial states, and is moreover preservedby any circuit transition. Therefore, it must hold in all reachable states.Before we give a more precise description of van Eijk's algorithm, we �rst intro-duce some de�nitions.Formulas. We describe the systems we are dealing with using propositionallogic formulas. These are syntactic objects, built from variables like x and y,boolean values 1 and 0, and connectives :, ^, _, ), and ,. We say that aformula is valid if and only if it evaluates to 1 for all variable assignments underthe usual interpretation of the connectives.State machines. We represent sequential synchronous circuits as state ma-chines in the standard way [4], where the set of states is the set of booleanvaluations of a vector s of variables; one variable for each input and internallatch. As we do not restrict the input part of the states, these state machinesare non-deterministic. The standard representation also guarantees that everystate has at least one outgoing transition.We characterise the set of initial states and the transition relation of the statemachine by the propositional logic formulas Init(s) and Trans(s; s0), respectively.In other words, Init(s) is satis�ed exactly by the initial states, and Trans(s; s0)is satis�ed precisely when there is a transition between the states s and s0. Thesafety property of the system we want to verify is represented by the formulaProp(s).Example 1. Assume that we want to decide whether the two subcircuitsin Figure 1 are equivalent. This amounts to checking whether the signalp is always true. Let us construct the necessary formulas. There are fourstate variables|one for every input and one for every delay component|so s = (x; d1; d2; d3). Since the delay components have an initial value of0, the formula for the initial states becomes:Init(x; d1; d2; d3) = :d1 ^ :d2 ^ :d3
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Fig. 1. An example circuitLooking at the logic contained in the circuit, we can write down theformula for the transition relation:Trans(x; d1; d2; d3; x0; d01; d02; d03) =(d01 , :(d1 ^ d2)) ^ (d02 , :x) ^ (d03 , :(x _ d3))Lastly, we de�ne the formula for the property p:Prop(x; d1; d2; d3) = (d1 ^ d2 ^ x) , (d3 ^ x)Signals. Given the formulas that characterise a state machine, we de�ne theset Signals that models the points in the circuit. The elements of Signals arefunctions taking state variable vectors to formulas instantiated with these vari-ables. Speci�cally, for every subformula f(s) of the system formulas Trans(s; s0)and Prop(s), such that f(s) is not dependent on any of the variables of s0, weadd the corresponding functions f and :f to the set. Moreover, we also add theconstant signals tt and �, for which tt(s) = 1 and �(s) = 0.Example 2. f1 is a signal in Figure 1 with the de�nition f1(x; d1; d2; d3) =d1 ^ d2. The negated signal :f has the de�nition :f1(x; d1; d2; d3) =:(d1 ^ d2).Signal correspondence. For a given equivalence relation � over the setSignals, we de�ne the signal correspondence condition, denoted by Holds(�; s),as follows: Holds(�; s) = f̂�g f(s), g(s):This means that the correspondence condition for an equivalence relation issatis�ed by a state when all the signals that are equivalent have the same value in



that state. We de�ne a signal correspondence relation as an equivalence relationwhose correspondence condition holds in all reachable states.1Algorithm. In order to �nd a signal correspondence relation, van Eijk's al-gorithm computes a sequence of equivalence relations �i, each being a betteroverapproximation of the desired relation. The sequence stops when an n is foundsuch that �n is equal to �n+1.The �rst approximation �0 is the equivalence relation that holds in the initialstates. We can de�ne it as follows; for all f and g, f �0 g if and only if thefollowing formula is valid:Init(s1) ) f(s1), g(s1):This means that two signals are equivalent precisely if they must have the samevalue in all initial states. The original algorithm computes �0 by constructing aBDD for every signal, and pairwise comparing these BDDs under the assumptionthat the BDD for Init(s) holds.The other approximations �n+1 for n � 0 are subsets of �n. We can de�nethem as follows; for all f and g, f �n+1 g if and only if f �n g and the followingformula is valid:Holds(�n; s1) ^ Trans(s1; s2) ) f(s2), g(s2):This means that two signals are equivalent in the new relation, when (1) theywere equivalent in the old relation and (2) they have the same value in thenext state if the old relation holds in the current state. The original algorithmcomputes �n+1 by pairwise comparison of the BDDs for the signals related by�n under the assumption that the BDD for �n+1 holds.The construction of approximations �i has the shape of an inductive argument;it has a base case and a step that is iterated until it is provable. The �nal signalcorrespondence relation therefore holds in all reachable states.For a schematic overview of the algorithm, see Figure 2. At lines 5 and 12, weuse the function validBdd that checks if a formula is valid by building its BDD.At lines 6 and 13, we use set to modify an equivalence relation by merging theequivalence classes for f and g.Example 1 (ctd.). The signal correspondence relation found by the algo-rithm for Example 1 looks as follows:f: : : ; (f1; d3); (f2; f3); (p; tt); : : : gFrom this information it follows immediately that the property p is al-ways true.1 Note that this is a slight generalisation of van Eijk's original de�nition [6].



1. �1;�2 := ;; ; ;2. -- compute �rst approximation3. for every f; g in Signals do4. form := Init(s1)) (f(s1), g(s1)) ;5. if (validBdd(form)) then6. set f �2 g ;7. -- iterate until a �xed point is reached8. while (�1 6=�2) do9. �1;�2 := �2; ; ;10. for every f; g in Signals such that f �1 g do11. form := Holds(�1; s1) ^ Trans(s1; s2)) (f(s2), g(s2)) ;12. if (validBdd(form)) then13. set f �2 g ;14. return �1 ; Fig. 2. Van Eijk's algorithmRemarks. The signal correspondence relation found by the algorithm some-times implies the safety property directly. If this is not the case, then we canstrengthen the transition formula Trans(s; s0) to a new formula Trans(s; s0) ^Holds(�; s)^ Holds(�; s0). This is legal as we only are interested in transitions inthe reachable state space. The new transition formula relates fewer states, andcan consequently reduce the number of �xpoint iterations in conventional modelchecking methods.Van Eijk's original paper presents a number of improvements of the basic method,such as retiming techniques that enlarge the set Signals so that the equivalence re-lation can contain more information, and random simulation that aims to reducethe number of pairwise comparisons by computing a better initial approximation�0. We will not discuss these techniques here, but refer to the original paper [6].3 St�almarck's method instead of BDDsVan Eijk's method has a number of disadvantages. First of all, sometimes it isimpossible to complete the analysis as some signals in the circuit can not berepresented succinctly as BDDs. Second, the algorithm always �nds the largestequivalence relation, which can be unnecessarily costly for proving the property.Third, the equivalences are computed by pairwise comparisons of signals, whichmeans we have to build a quadratic number of BDDs. We will now focus ontrying to solve these problems by using a SAT method instead of BDDs.St�almarck's method. St�almarck's saturation method [14, 13] is a patented al-gorithm that is used for satis�ability checking. The method has been successfullyapplied in an wide range of industrial formal veri�cation applications. The algo-rithm takes a set of formulas fp1; : : : ; png as input, and produces an equivalencerelation over the negated and unnegated subformulas of all pi. Two subformu-las are equivalent according to the resulting relation only when this is a logical



consequence of assuming that all formulas pi are true. The algorithm computesthe relation by carefully propagating information according to the structure ofthe formulas.The saturation algorithm is parameterised by a natural number k, the saturationlevel, which controls the complexity of the propagation procedure. The worst-case time complexity of the algorithm is O(n2k+1) in the size n of the formulas,so that for a given k, the algorithm runs in polynomial time and space. For anyspeci�c k, there are formulas for which not all possible equivalences are found,but for every formula there is a k such that the algorithm �nds all equivalences.A fortunate property is that this k is surprisingly low (usually 1 or 2) for manypractical applications, even for extremely large formulas.The advantage of having control over the saturation level is that the user canmake a trade-o� between the running time and the amount of information thatis found. A disadvantage is that it is not always clear what k to choose in orderto �nd enough information. In contrast, �nding equivalences using BDDs resultsin discovering either all information, or no information at all due to excessivetime and space usage.Modi�cation of van Eijk's method. We now adapt van Eijk's algorithm touse St�almarck's method.To compute the initial approximation �0, we use the saturation procedure tocompute equivalence information between positive and negative subformulas ofInit(s1) and Holds(Id; s1) under the assumption that both of the these formulasare true. Here, Id denotes the identity equivalence relation on signals, relatingf to g if and only if f = g. Note that Holds(Id; s1) is a valid formula, so as-suming that it is true adds no real information; we just add it to the system toensure that all subformulas that correspond to signals are present in the result-ing equivalence relation. We then use the resulting information to generate theequivalence relation �0 on signals.To improve a relation �n, we run the saturation procedure on a set of formulasthat contains Holds(�1; s1), Trans(s1; s2), and Holds(Id; s2). Again, we need theformula Holds(Id; s2) to ensure that all subformulas that correspond to signalsare present. From the result we extract �n+1 by looking at the equivalences be-tween subformulas depending on s2, and taking the intersection with the originalequivalence relation �n. The intersection of two equivalence relations relates twosignals if both original relations relate them.For a schematic overview of our algorithm, see Figure 3. The notation � =s1,occuring at lines 4 and 10, turns an equivalence relation � on formulas into anequivalence relation on signals, by relating two signals f and g if and only iftheir instantiated formulas f(s1) and g(s1) are related by �.In our modi�ed algorithm, we have explicit control over the running time com-plexity of each iteration step; each step is guaranteed to take polynomial timeand space. As a consequence, we do not have to worry about a possible expo-nential space blowup, as in the case of building BDDs. However, having this



1. �1 := ; ;2. -- compute �rst approximation3. system := fInit(s1);Holds(Id; s1)g ;4. �2 := st�almarck(system) = s1 ;5. -- iterate until a �xed point is reached6. while (�1 6=�2) do7. �1 := �2 ;8. system := fHolds(�1; s1);Trans(s1; s2);Holds(Id; s2)g ;9. � := st�almarck(system) ;10. �2 := �1 \ (� =s2) ;11. return �1 ;Fig. 3. Van Eijk's algorithm using St�almarck's methodexplicit control also means that we do not always compute the largest relation,since the saturation algorithm is possibly incomplete depending on what k wehave chosen. In many cases it turns out that even for small k, the equivalencerelation we compute using St�almarck's algorithm is still large enough to decide ifthe property is true or not, or to considerably reduce the number of subsequentmodel checking iterations.Signal implications. Finding equivalences between signals is a rather arbitrarychoice. We could just as well try to �nd other information about signals that iseasy to compute. For example, we can compute implications between signals.An implication f ) g occurs between two signals f and g, if g must be truewhenever f is true. The implications over the set of signals are interesting asthey can capture all binary relations. The reason for this is that any formula thatcontains two variables can be characterised by a �nite number of implicationsbetween these variables, their negations, and constants.The presented algorithm can easily be extended to �nd implications between thecomputed equivalence classes of signals. Note that implications within equiva-lence classes do not give any information, since we know that every point in anequivalence class implies every other point in the same class. Our approach forgenerating the implications is simple: To begin with, we generate all the equiv-alence classes that hold over the reachable state space using the algorithm inFigure 3. From each equivalence class we take a representative signal. Finally,we run a modi�ed version of the algorithm in Figure 3, that uses induction to�nd implications rather than equivalences between the representatives.4 InductionIn order to further improve our adaptions of van Eijk's method, we start byinvestigating another safety property veri�cation method: induction [12].



Simple induction. The idea behind simple induction is to attempt to decidewhether all reachable states of the described system make the formula Prop(s)true by proving that the property holds at the initial states, and proving that ifit holds in a certain state, it also holds in the next state. The inductive proof isexpressible in propositional logic using the following two formulas:Init(s1)) Prop(s1)Prop(s1) ^ Trans(s1; s2)) Prop(s2)If the �rst formula is valid, we know that all the initial states of the system makethe property true. If the second formula is valid, we know that any time a statemakes the property true, all states reachable in one step from that state alsomake the property true. We can thus infer that all reachable states are safe.Simple induction is not a complete proof technique for safety properties; it iseasy to construct a system whose reachable states all make Prop(s) true, but forwhich the inductive proof fails. Just take a safe system and change it by addingtwo unreachable states s1 and s2 in such a way that there is a transition betweens1 and s2, the formula Prop(s1) is true, and Prop(s2) is false. This system cannot give a provable induction step even though all reachable states satisfy theproperty. A stronger proof scheme is needed for completeness.Induction with depth. In the step case of simple induction we prove thatthe property holds in the current state, assuming that it holds in the previousstate. One way to strengthen the induction step is to instead assume that theproperty holds in the previous n consecutive states. Correspondingly, the basecase becomes more demanding.Let Trans�(s1; : : : ; sn) be the formula that expresses that s1; : : : ; sn are states ona path s1; : : : ; sn, and let Prop�(s1; : : : ; sn) be the formula that expresses thatProp is true in all of the states s1; : : : ; sn. Induction with depth n amounts toproving that the following formulas are valid:Init(s1) ^ Trans�(s1; : : : ; sn)) Prop�(s1; : : : ; sn)Prop�(s1; : : : ; sn) ^ Trans�(s1; : : : ; sn+1)) Prop(sn+1)The modi�ed base case expresses that all states on a path with n states startingin the initial states make the property true. The step says that if s1 : : : sn+1 isa path where s1 : : : sn all make Prop true, then sn+1 also makes Prop true. Wehenceforth refer to n as the induction depth. Note that induction with depth 1is just simple induction.Unique states induction. The induction scheme with depth discovers pathsto any state s in the reachable state space that makes Prop(s) false: A pathwith n states starting from the initial states and ending in a bad state is acounterexample to base cases of depth n or larger. As we are verifying �nitesystems, some depth n is therefore su�cient to discover all bugs.Unfortunately the scheme is still not complete; it is possible to construct a safesystem where the induction step fails for any depth n. Just take any safe system



and change it by adding two unreachable states s1 and s2, so that the propertyholds in s1, s1 can both reach itself and s2, and the property fails in s2. Thenthere exist a counterexample for every depth n that loops n� 1 times in s1, andthen visits s2.However, a state that is reachable from the initial states must be reachableby at least one path that only contains unique states. Therefore, we can adda formula Uniq(s1; : : : ; sn) to the induction step that expresses that s1; : : : ; snare di�erent from each other. This restriction on the shape of considered pathsmakes it impossible to generate counterexamples of arbitrary length from loopsin the unreachable state space. The induction step now becomes:Prop�(s1; : : : ; sn) ^ Trans�(s1; : : : ; sn+1) ^ Uniq(s1; : : : ; sn+1)) Prop(sn+1)The result is a complete scheme for verifying safety properties of �nite systems:If there are paths in the unreachable state space that falsely make the inductionstep unprovable, they are ruled out from consideration by some induction depthn. However, a major problem is that this n can be extremely large for someveri�cation problems, and that it is often di�cult to predict what n is needed.5 Stronger induction in van Eijk's methodWe will now make use of the insight into induction methods we gained in theprevious section. The underlying proof method that van Eijk's algorithm uses to�nd equivalences that always hold in the reachable state space is simple induc-tion. Recall that we have demonstrated that this proof technique is too weak toprove all properties that hold globally in the reachable states. Consequently thereare circuits that contain useful equivalences that van Eijk's original algorithmmisses due to the incompleteness of its underlying proof method.Generalisation to completeness. We can make van Eijk's original algorithmcomplete by modifying our implementation to use unique states induction withdepth n rather than simple induction. In the base case of the algorithm, wecompute an equivalence relation on signals that hold in the �rst n states on pathsfrom the initial states. In the algorithm step, we assume that our most recentlycomputed signal equivalence relation holds in the �rst n of n + 1 consecutiveunique states, and derive the subset of the signal equivalences that necessarilyholds in state n+ 1.For a detailed description of the resulting algorithm, see Figure 4. We use thenotation Holds�(�; s1; : : : ; sn), occuring at lines 3 and 9, as a shorthand forHolds(�; s1)^ � � � ^Holds(�; sn). The algorithm for �nding implications betweensignals is modi�ed in an analogous way.We can now discover all equivalences that hold globally in the state space. In par-ticular, if a safety property holds in all reachable states, there exists a saturationlevel and an induction depth that is su�cient to discover that the correspondingsignal is equivalent to the true signal.



1. �1 := ; ;2. -- compute �rst approximation3. system := fInit(s1);Trans�(s1; : : : ; sn);Holds�(Id; s1; : : : ; sn)g ;4. � := st�almarck(system) ;5. �2 := (� =s1) \ : : : \ (� =sn) ;6. -- iterate until a �xed point is reached7. while (�1 6=�2) do8. �1 := �2 ;9. system := fHolds�(�1; s1; : : : ; sn);Trans�(s1; : : : ; sn+1);Holds(Id; sn+1);Uniq(s1; : : : ; sn+1)g ;10. � := st�almarck(system) ;11. (�2) := �1 \ (� =sn+1) ;12. return �1 ;Fig. 4. The adaption of the algorithm for depth n unique states inductionAs an additional bene�t, the possibility to adjust both the saturation level andthe induction depth allows a high degree of control over how much work is spenton discovering equivalences. We can now increase the number of equivalencesthat can be discovered for a �xed saturation level by increasing the inductiondepth; this can be useful as an increase in saturation level means a big changein the time complexity of the algorithm.We note that the idea of using stronger induction not is restricted to our SAT-based version of van Eijk's algorithm; the original BDD-based algorithm canalso be made complete by stronger induction.6 ApproximationsIn this section we show that van Eijk's algorithm is an approximative forwardsreachability analysis. We then use this insight to derive an analogous backwardsapproximative analysis, and combine the two algorithms into a mutual improve-ment algorithm.The forwards reachability view. Figure 5 shows the shape of a standardforwards reachability analysis, where we use init to denote the set of initialstates, and the operation postImage to compute postimages (the postimage ofa set of states S is the set of states that can be reached from S in one transition).We now demonstrate that van Eijk's algorithm performs such a forwards analysisapproximatively, in the sense that it is a variant of the standard analysis whereinit has been replaced with an overapproximation, and the exact operations [and postImage have been replaced by overapproximative operators.Van Eijk's algorithm computes a sequence of relations �i. Each of the corre-sponding formulas Holds(�i; s) can be seen as the characterisation of a set ofstates Ai.



1. n; S0 := 0; init ;2. loop3. Sn+1 := postImage(Sn) [ Sn ;4. n := n+ 1 ;5. until (Sn+1 6= Sn) ;6. return Sn+1 ;Fig. 5. A standard forwards reachability algorithmIn the base case, the algorithm computes the binary relation �0 that holdsbetween points in all the initial states. The formula Holds(�0; s) will thereforebe valid for every state s that makes Init(s) valid, and possibly for some otherstates. A0 is consequently a superset of the initial states.In the step, the algorithm computes the subrelation �n+1 of �n that provablyholds after a transition under the assumption that �n holds before the transi-tion. Every state s that is reachable in one transition from a state in An thereforemakes Holds(�n+1; s) valid. But �n+1 is a subrelation of �n, so every state s inAn also satis�es Holds(�n+1; s). Consequently, the step operation correspondsto computing An+1 as the overapproximative union of An and the overapproxi-mative postimage of An.Finally, the algorithm checks whether �n+1 is the same relation as �n. Thiscorresponds to checking whether An+1 = An. If this is the case, the algorithmterminates, otherwise the step is iterated.Approximative backward analysis. It is well known that forwards reacha-bility analysis has a dual analysis called backwards reachability analysis [4]. Wecan perform the backward analysis using the forwards algorithm by modifyingthe characterisation of the underlying system in the following way:Init0(s) = :Prop(s)Trans0(s; s0) = Trans(s0; s)Prop0(s) = :Init(s)The result of the computation is the set of states that are backwards reachablefrom the bad states|the states where the property does not hold.We can use the system transformation together with any of our variants of vanEijk's algorithm. In particular, we can compute a relation � that characterisesan overapproximation of the states that are backwards reachable from the statesthat make Prop(s) false. Analogously to the forwards algorithm, the system issafe if Holds(�; s) implies the safety property, which in this case corresponds tothat no initial state is in the overapproximation of the set that can be backwardsreached from the bad states. Also, if we do intersect the initial states, we canstill use the approximation to constrain the transition relation in order to reducethe number of necessary iterations of an exact forwards reachability algorithm.



Mutual improvement. The new approximate backward algorithms can bevery useful on their own. However, there exists a general way of enhancing ap-proximative reachability analyses that improves matters further [8].The idea is to �rst generate the overapproximation of the reachable states. If thecorresponding set has an empty intersection with the bad states, we are done.If it has an nonempty intersection, there are two possible reasons: Either thesystem is unsafe, or the approximation is too coarse. Regardless of which is thecase, we know that the only possible bad states we can reach are those that arecontained in the intersection. We can therefore take the intersection to be ournew bad states.But now we can apply approximate backwards reachability analysis from the newbad states. If we do not intersect the initial states, the system must be safe. If wedo, we can take the intersection to be the new initial states and restart the wholeprocess. The algorithm terminates if we generate the same overapproximationstwice, as this implies that no further improvement is possible.The resulting mutually improved overapproximations are always at least as goodas the original overapproximations, and they can sometimes be substantiallybetter as we demonstrate in the next section.7 Experimental resultsIn this section, we present a number of experiments we have done using a pro-totype implementation of our variants of van Eijk's algorithm. We compare ourresults against the results of three other methods. The �rst two are reachabilityanalysis and unique states induction, as implemented in the SAT-based modelchecking workbench FixIt [1]. The third method is BDD-based model checking,as implemented in the veri�cation tool VIS version 1.3. In the experiments withVIS we have used dynamic variable reordering and experimented with di�erentpartitionings.2 All running times are measured on a 296 MHz Ultrasparc-II with512 MB memory. The results are displayed in Table 1.The motivation for the choice of benchmarks is as follows. We have chosen oneindustrial example, one example that is di�cult to represent with BDDs, andone example that belongs to the easy category for BDDs.The Lalita example. The Lalita example is an industrial telecommunicationsexample from Lucent Technologies that was one of the motivations for the re-search presented in this paper. We received the example as a challenge fromProver Technology, a Swedish formal veri�cation company. It was given to usas a black-box problem; we had no information about the structure of the sys-tem. The design was already known to be within reach of BDD technology, butnot all of the properties were possible to verify using unique states induction.2 We have also tried approximate model checking in VIS, but there appears to be abug in the implementation which makes it unsound.



Property FixIt FixIt VIS OurReach. Induct. MethodLalita, nr. 2 0.3 0.2 219.9 2.3a7 41.8 0.2 207.3 2.2a10 [>15min] [>15min] 86.6 9.7b11 [>15min] [>15min] 199.3 2.1aButtery, size 2 0.1 1.0 0.3 0.1a4 16.6 [>15min] 2.0 0.1a16 [>15min] | [>15min] 1.4a64 | | | 37.4aArbiter 2.5 [>15min] 2.1 76.9ca with equivalences, b with mutual improvement, c with implicationsTable 1. Experimental results (times are in seconds).When we attempted to verify the design using SAT-based reachability analysis,the representations became excessively large due to the computation of pre- andpostimages.The design contains 178 latches. The problem comes with thirteen safety prop-erties that should be veri�ed; we present the four most interesting properties:the two properties that were most di�cult for VIS (2 and 7), one of the twoproperties that are hard for induction (11), and the property that was hardestfor our methods (10).All of the properties except property 10 and 11 can be done using SAT-basedinduction. However, we can verify or refute every property except property 10directly using our forwards equivalence algorithm. Property 10 is veri�ed us-ing one iteration of mutual improvement of the computed equivalences. As thetable demonstrates our analyses are a factor 10 to 100 faster than BDD-basedveri�cation in VIS.The buttery circuits. This family of benchmarks arose when we were design-ing sorting circuits for implementation on an FPGA. The problem is to decidewhether a buttery network containing recon�gurable sequential componentsis equivalent to an optimised version where the components have been shiftedaround. When we attempted to verify the circuits we discovered that standardalgorithms could not handle circuits of any reasonable size. In particular, BDD-based methods did not work because the BDDs representing the circuits becametoo large.The model checking algorithms in VIS are unable to verify larger networks thansize 4 in a reasonable amount of time and space. SAT-based reachability analy-sis and induction are also unable to cope with larger instances of the circuits.However, the forwards equivalence algorithm handles all the sizes we have triedin less than 40 seconds.



The arbiter. This example is a simple benchmark from the VIS distribution.The arbiter controls three clients that compete for bus access. We verify theproperty of mutual exclusion.The problem is easy both for BDDs and SAT-based symbolic reachability ana-lysis, but can not be done using unique states induction. The example clearlydemonstrates that �nding implications between equivalence classes can be strongerthan only computing equivalences: Our equivalence based analysis alone is un-able to verify the design in a reasonable amount of time, but we can verify thedesign in 77 seconds by computing implications between the equivalence classes.8 Related workThe �rst approach in the literature to apply SAT-based techniques to modelchecking was Bounded Model Checking [2]. Bounded model checking of safetyproperties corresponds to searching for bugs by attempting to prove the basecase only of induction with depth. Certain bugs that are hard to �nd usingBDD-based model checking can be found very quickly in this way. In order toe�ectively also prove safety of systems, standard symbolic reachability analysiswas adapted to use SAT-solvers [1] which resulted in the analysis implemented inFixIt. Currently, interesting work is being done on combinations of SAT-solversand BDDs for model checking [15].The idea to use approximate analyses to generate semantic information fromsystems originally comes from the �eld of program analysis. Many di�erent suchanalyses can be seen as abstract interpretations [5]. In particular, Halbwachs etal. [8, 10] have used abstract interpretation techniques to generate linear con-straints between arithmetic variables that always holds in the reachable statespace of synchronous programs and timed automata. This information is usedboth for compilation purposes and for veri�cation. The same techniques are usedfor generating strengthenings in the STeP system [11] that is targeted towardsdeductive veri�cation of reactive programs.The main di�erences between our work and the work on synchronous programsand STeP, is (1) that the analyses we present here are specially designed forgenerating information about gate level circuits rather than programs, (2) thatwe focus speci�cally on simple relations between boolean signals, and (3) thatwe use St�almarck's saturation method as a possibly incomplete but fast methodfor generating the relations. Also, we generate information while keeping in mindthat we can apply an exact analysis later, and we have consequently optimisedthe algorithms for quickly generating information. In the case of synchronousprogram veri�cation and STeP, a precise analysis is not even possible in generalas in�nite state systems are addressed.Dill and Govindaraju [7] have developed a method for performing BDD-basedapproximate symbolic model checking based on overlapping projections. Theiridea is to alleviate BDD blow-up by representing an overapproximation of a



set of states S as a vector of BDDs, where each individual BDD characterisesthe relation in S between some subset of the state variables. The conjunctionof the BDDs represents an overapproximation of the underlying set. The maindi�erence between our approach and theirs, is that we consider some particularrelations between all pairs of signals, while they consider all relations betweena number of subsets of state variables. Also, the user of Dill and Govindaraju'smethod must manually choose the subsets of state variables to build BDDs for,whereas our methods are fully automatic.9 Conclusions and Future WorkWe have taken an existing BDD-based veri�cation method which �nds equivalentpoints in a circuit, and adapted it to use St�almarck's method instead of BDDs.Then, we strengthened the resulting algorithm by combining it with recentlydeveloped induction techniques. We also discussed how the algorithm can beimproved by computing implications rather than simple equivalences betweenpoints. Lastly, we observed that the algorithm can be transformed into a mutualimprovement approximative reachability analysis.The resulting collection of new algorithms can be seen as SAT-based improve-ments of van Eijk's original algorithm, where we use stronger inductive methods.Viewed from this angle, we have made van Eijk's method complete and provideda more �ne-grained tuning between the time used and the information found.Viewing our work in a di�erent way, we can say that we have improved aninductive method by using van Eijk's algorithm to �nd equivalences. In somecases, such as the buttery examples (see Section 7), unique states inductionneeds an exponentially larger induction depth than our improved analyses.We believe the proposed methods work well for several reasons. First of all, vanEijk's original idea of �nding equivalences of points in the circuit makes it veryhard for properties to \hide" deep down in the logic of a circuit. Comparing thiswith problems occurring with methods that only look at state variables (such asconventional model checking methods) or methods that only look at the outputs(such as inductive methods) clearly shows that this is a desirable thing to do.Second, the use of St�almarck's saturation algorithm forms a natural �t with vanEijk's original algorithm. The possibility of controlling the saturation level payso� especially in systems where it is hard to �nd all equivalences, but su�cient to�nd some. St�almarck's algorithm is also rather robust in the number of variablesused in formulas.Third, inductive methods perform well because they do not need any iteration orcomplicated quanti�cation. Unfortunately, when we prove partial properties ofsystems, or when we prove properties about systems with a lot of logic betweenthe latches and the property, induction performs poorly because the inductionhypothesis is not strong enough to establish the inductive step. In this case,
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