
Automatic veri�cation of combinational andpipelined FFT circuitsPer BjesseChalmers University of Technology, Swedenbjesse@cs.chalmers.seAbstract. We describe how three hardware components (two combi-national and one pipelined) for computing the Fast Fourier Transformhave been proved equivalent using an automatic combination of sym-bolic simulation, rewriting techniques, induction and theorem proving.We also give some advice on how to verify circuits operating on com-plex data, and present a general purpose proof strategy for equivalencechecking between combinational and pipelined circuits.1 IntroductionFFT components are a challenge to verify as they compute complex functions in-volving many arithmetic operations. Bit-level correctness proofs for such circuitsare not within the reach of today's technology; an appropriate level of modellingis therefore on the level of individual arithmetic operations on signals carryingnumerical data.In order to make veri�cation techniques industrially interesting, it is gener-ally agreed that a high degree of automation is desirable. Unfortunately classi-cal automatic methods such as propositional logic tautology checking or modelchecking can not be immediately applied at this level of abstraction. Di�erentextensions of model checking with uninterpreted functions encoded in BDDshave been proposed [VB98]; we instead use theorem proving, but in such a waythat no user guidance is needed during the proofs.As we aim for veri�cation at the arithmetic level, it is imperative to structurethe proofs to be as simple as possible; we therefore devise heuristics for theparticular class of circuits we verify and apply automatic analyses that aim toreduce the work that has to be done in the theorem prover. For this end we usethe Lava hardware development platform that has a powerful language in whichwe can implement our analyses and write parametrisable scripts that controlcomplex theorem prover interactions [BCSS98].The work described is an industrial case study with Ericsson Cadlab, Stock-holm.2 The Lava hardware development platformLava is a hardware description language and a framework for hardware veri�ca-tion developed at Chalmers and Xilinx [BCSS98]. One of the principal uses ofLava is as a platform for hardware veri�cation experiments.

Lava is embedded in the functional language Haskell; all aspects of the devel-opment of hardware from descriptions down to the interfacing to layout tools areexpressed in the same language. The use of a polymorphic high level languagethat supports higher order functions gives very concise hardware descriptionsand allows us to devise combinators that capture common design patterns.The circuit descriptions can be interpreted by symbolic evaluation in a num-ber of di�erent ways; examples of built in standard analyses are circuit sim-ulation, generation of logical formulas in formats suitable for external theoremprovers and generation of VHDL. The veri�cation interpretation is parametrisedover the proof procedure and allows the passing of optional proof parameters; auser can therefore quickly retarget from one proof procedure to another withoutlosing �ne grain control.3 The Fast Fourier TransformsThe Fast Fourier Transforms (FFTs) are e�cient algorithms for computing alength N sequence of complex numbers X given an initial sequence x and aconstant WN de�ned as e�j2�=N :X(k) = N�1Xn=0 x(n) �W knN ; k 2 f0 : : :N�1gThe FFTs exploit symmetries in the twiddle factors W kN together with restric-tions of sequence lengths (for example to powers of two) to reduce the numberof necessary computations. Examples of twiddle factor laws that express usefulsymmetries are W 0N = 1WNN = 1W kn �Wmn =W k+mnW kn =W 2k2n ; (n; k � N)The FFT algorithms are often implemented in combinational hardware, andare key building blocks in signal processing applications; the FFTs are rumouredto be the worlds most implemented algorithms in hardware.The reference FFT is the decimation in time Radix-2 algorithm, which op-erates on input sequences whose length is a power of two [PM92]. If the inputlength also is a power of four, the decimation in frequency Radix-22 FFT canbe applied [He95]. From a designer's point of view the question is whether thecombinational circuits that implement these algorithms are equivalent. As thenetworks are fundamentally di�erent, veri�cation of equivalence is a non-trivialundertaking.Combinational implementations are not the only ones possible; pipelined se-quential designs can use less circuit area by trading space for time. A pipelinedimplementation of a size 2n Radix-22 FFT (see �gure 1) consists of two simple

Twiddle
memory

W0 W1 W2

BF1 BF2 BF2BF1 BF1 BF2

32 16 1248

In OutC1 C2 C1 C2 C1 C2

6-bit counter

l mFig. 1. Structure of pipelined implementation of a size 64 Radix-22 FFTkinds of combinational components (C1 and C2) that together form a stage; awhole circuit consists of n=2 stages. Each primitive block is controlled by syn-chronisation signals generated by an n-bit counter. This counter also addressesa multi port memory that outputs streams of twiddle factors that are multipliedtogether with the outputs of each stage.Figure 2 shows how the pipelined FFT circuit simulates the correspondingcombinational circuit over time by reading the inputs in the �rst sequence ofinput values IF (0) while spitting out unde�ned outputs until time lag (2n � 1for a size 2n FFT) when the �rst element of the output sequence OF (0) isgenerated; the lag time is always constant. At the same time as the outputsare produced, inputs from a new input sequence are read so that the circuitcontinuously processes data.
output

input

OF(0) OF(1)

t

t

IF(0) IF(1)

lag lag+2*20 lag+1*2n nFig. 2. Operation of the pipelined circuit

4 FFT low-level descriptionsThe FFT descriptions are parameterised by the circuit size and are formulatedusing a number of simple circuits and combinators that are useful for signalprocessing applications.A key point is that the regularity of the combinational networks makes thecircuits very easy to describe in Lava; the description of the Radix-2 FFT interms of the signal processing combinators is just 3 lines long (see appendix A).The Lava circuit descriptions can be used to automatically generate struc-tural VHDL for all parts of the implementations with the exception of the multiport memory component.5 Veri�cation of componentsAs we want automatic proofs, we will only be concerned with equivalence check-ing for �xed size circuits. We will also exploit designer knowledge and use Lavaanalyses in order to make the proofs tractable for the external proof procedure.The circuits are modelled on the level of operations on in�nite precision com-plex numbers; this modelling is appropriate as �nite representations of complexnumbers only can be used for approximate calculation of the FFT. A reason-able notion of implementation equivalence must therefore be de�ned in terms ofin�nite precision complex arithmetic.As a shorthand, we adopt the convention thatF (x; y) � F (x(0)::x(i�1); y(0)::y(i�1))if F 2 Form (the set of �rst order logic formulas) and x; y 2 Si where S is anynon-empty set.5.1 Theoretical basis of the veri�cationsCombinational circuits can be viewed as functions f from input to output. Lava'ssymbolic evaluation can generate formulas �f that de�ne the functions we areconcerned with in the sense that T ` �f (I; O)) f(I) = O if T is a theorycontaining theorems that are true in a standard interpretation of complex arith-metic.The formulas that are constructed in the following veri�cations are expressedin �rst order logic with equality, and contain variables and two-place functionsymbols plus, sub, tim and W . The circuit equivalence checking problem isreduced to showing that certain formulas that capture implementation equiva-lence are members of the theory T which we give axioms for. The axioms arewell-known properties of complex arithmetic and some twiddle factor identities.We know that the axioms hold in the interpretation I that complies with thefollowing conditions{ The domain is the set of complex numbers

{ plus designates complex addition{ sub designates complex subtraction{ tim designates complex multiplication{ W designates the function fw(k;N) = e�j2�k=NAll formulas that are derivable from the axioms in a sound proof system aretherefore also true in I.5.2 Combinational FFT veri�cationAre the abstract implementations of the Radix-2 and the Radix-22 FFT equiv-alent for sizes that are an exponent of four?The �xed size FFT circuits are functions F1(I) and F2(I) from complex inputsequences to complex output sequences. Lava's symbolic evaluation can generateformulas �1 and �2 that de�ne these functions. Our criterion for equivalence ofthe combinational FFT is that�1(I; O1) ^ �2(I; O2) ! O1 = O2Instead of generating the two de�ning formulas individually and then com-bining them together to a resulting formula, we can construct a test bench circuitthat directly generates the correctness formula when interpreted symbolically:fftSame n =do inp <- newCmplxVector (4^n)out1 <- radix2 (2*n) inpout2 <- radix22 n inpequals (out1,out2)The test bench builds a vector of unrestricted complex variables, which are givento both FFT implementations. The resulting output sequences are then point-wise compared to each other for equality. If the formula describing this systemis derivable by the theorem prover using the axioms for the theory T , then it istrue in the model I and the implementations are equivalent.Lava's veri�cation interpretation takes a test bench circuit and a proof pro-cedure with some arguments, and automatically generates formulas and runs theproof. The manual step that has to be taken is to choose a prover and possiblygive proof options. In this case, we have to choose a �rst order logic theoremprover, and specify some axioms. These include some simple algebraic laws forthe arithmetic operators, such as distributivity of multiplication over additionand that 1 is a unit element for multiplication. The twiddle factor identities fromsection 3 are also necessary.Although these axioms with any �rst order logic prover are in theory su�cientto prove the circuits equivalent, the number of consequences grows very quicklyif the rules are applied mindlessly. This combined with the fact that the FFTcircuits generate formulas that for larger sizes grow to be megabytes big meansthat we must give extra proof options in order to make the proofs tractable.Symbolic evaluation of the FFTs for 4 abstract inputs reveals some interestingcircuit properties (the input and output vectors are indexed backwards):

Lava> symbolic_eval (radix2 2)[(x3 - W(2, 0) * x1) - W(4, 1) * (x2 - W(2, 0) * x0),(W(2, 0) * x1 + x3) - W(4, 0) * (W(2, 0) * x0 + x2),W(4, 1) * (x2 - W(2, 0) * x0) + (x3 - W(2, 0) * x1),W(4, 0) * (W(2, 0) * x0 + x2) + (W(2, 0) * x1 + x3)]Lava> symbolic_eval (radix22 1)[W(4, 0) * ((x3 - x1) - W(4, 1) * (x2 - x0)),W(4, 0) * ((x1 + x3) - (x0 + x2)),W(4, 0) * (W(4, 1) * (x2 - x0) + (x3 - x1)),W(4, 0) * ((x0 + x2) + (x1 + x3))]The lack of control logic in the combinational FFT components causes the circuitoutputs to be polynomials in the inputs and twiddle factors only. Rewriting ofthe expressions by simplifying away twiddle factors that are equal to 0 or 1,conversion of the remaining twiddle factors to the form W xN and restructuringof arithmetic expressions to sum of products form makes it possible to show thetwo results equal by syntactic equality alone.The rewriting has to be done in a particular way for it to be applicable to thelarger circuits. If the axioms are given as standard equalities, they can be usedin both directions. This is not how the most e�cient proof would proceed, as itsu�ces to use all the rules in one direction only: expand out the polynomials,take away trivial twiddle factors and rewrite the others.Unidirectional rules are therefore more suitable for our purposes. The theo-rem prover Otter has e�cient such rules that are called demodulators [MW97];the use of a demodulation rule can be unconditional or restricted by predicateson terms. An important property of these rules is that they are used as often aspossible without accumulating intermediate results. This reduces the number ofconsequences and makes normalisation of large expressions tractable.The demodulation proof rules are speci�ed inside Lava and passed to Otter astwo theories. The actual proofs are done by calling the veri�cation interpretationon the test bench and the proof con�guration:options = [Prover otter, Theory arithmetic, Theory (twiddle 4)]Lava> verify options (fftSame 1)ValidIn this way the equivalence of circuits up to size 256 is proven automatically.Statistics for the resulting proofs and some system formula measures such as thenumber of primitive logical and arithmetic operations are given in table 1. Therunning times are measured on a 300 MHz Sun Enterprise 450.

FFT size Veri�cation time (s) Formula size (Bytes) # of variables # of formula operations4 0.09 1179 33 5916 0.39 10 761 233 43364 10.31 172 088 1334 2529256 827 2 886 561 6939 13 313Table 1. Statistics for veri�cation of equivalence between combinational FFTs5.3 Pipelined FFT veri�cationWe would now like to verify that the sequential pipelined implementation of theRadix-22 is equivalent to the combinational circuit. We employ a strategy that isoptimised for equivalence checking of combinational and constant delay (\lag")pipelined circuits.The presentation is divided into two parts: The �rst part describes the strat-egy and the second demonstrates how it applies to the particular case of ourFFT veri�cation.A strategy for pipeline equivalence proofs If we observe the pipelinedcircuit for a single clock period, it is a function from a starting state S and inputI to a �nishing state S0 and a resulting output O.(O;S0) = ppl(I; S)We use the term \frame" to refer to a complete in- or output data sequencefor the combinational or pipelined circuit. Lava can generate a de�ning formula�ppl(I; S;O; S0) for the ppl(I; S) transition function that captures how the circuitbehaves over a single clock tick. The objective is to show equivalence betweenthe two implementations for any number of successive frames starting from a(partially) speci�ed initial state, using the following veri�cation strategy whichwe refer to as Equiv!:1. Generate the de�ning formula �ppl(I; S;O; S0) of the pipelined circuit.2. De�ne l to be the number of inputs that the pipelined circuit has to consumebefore it can read the �rst input of the second frame.3. De�ne m as the least number of time steps that the pipelined circuit has torun to allow an observer to deduce that the output from the sequential circuitmatches a single frame of output from the combinational implementation.4. Let k = max(l;m).5. Let �kppl be the following formula that expresses what behaviour a length ktrace of the sequential circuit exhibits�ppl(I0; S0; O0; S1) ^ �ppl(I1; S1; O1; S2) ^ : : : ^ �ppl(Ik�1; Sk�1; Ok�1; Sk)This is the k-step unrolling of the pipelined transition function.We refer to a trace that is a model for �kppl as a T trace, and observe thefollowing:

{ If we de�ne an initialisation state as a state that immediately precedesthe processing of a new frame, both S0 and Sl are initialisation stateson all T traces. Furthermore, Sl is the closest initialisation state to S0.{ Any in�nite trace of the system is made up from in�nitely many con-catenated T traces; given that l < k successive traces trn and trn+1 alsooverlap with trn(l : : : k�1) = trn+1(0 : : : k�l�1).6. Generate a de�ning formula for the combinational circuit, �cmb(I; O).7. From �kppl and �cmb, construct a formula � that expresses implementationequivalence for a single frame of inputs8. A proof of � without any assumptions at all on the initialisation state S0implies 8S0:�. This corresponds to equivalence for any number of time framesas the circuits will behave in the same way regardless of the initialisationstate values before a new frame is processed; a direct proof of � is hence notrealistic. Therefore strengthen the assumptions on S0 by a formula � thatrestricts some of the S0 variables to the initial values given in the pipelinedcircuit description. If now �(S0) ! �is provable, the circuits are equivalent for any number of time frames underthe assumption that � is always true in initialisation states. Refer to thisassumption as assumption A9. Try to prove assumption A valid by a proof of�(S0) ^ �kppl ! �(Sl)As � holds in the initial state of the circuit, this formula impliesA as it assertsthat � will hold in the state Sl (that is reached immediately before a newprocessing cycle is initiated) if � is true in S0 (that was reached immediatelybefore this frame was processed); A is therefore entailed by induction.10. If step 8 and step 9 were successful, deduce multi frame equivalenceA valid question is, of course, \Why is it reasonable to assume that a part ofthe pipelined circuit always is in a state where � holds before a new frame isread?". This is probable as the pipelined circuit is supposed to repeat the frameprocessing behaviour again; the registers in the control logic should thereforehave similar contents in the initialisation states as in the speci�ed initial circuitstate.By having reduced the problem to two simple proofs we have devised a simplestrategy for showing pipelined circuits with a �xed lag equivalent to combina-tional implementations. This strategy is implemented in an automatic Lava proofscript that is parameterised over circuit descriptions, frame length, the constantlag and a proof con�guration for the frame equivalence proof. This script auto-matically generates and reduces all formulas as much as possible before callingthe theorem prover speci�ed in the proof con�guration; the only manual stepsare to choose which state variables to restrict and to select a proof procedure.Any prover and extra proof options can be speci�ed in the proof con�guration;the pipelined circuit description can also have as many or as few initial valuesgiven as desired.

Application to the pipelined Radix-22 FFT The script that implementsEquiv! proves pipeline equivalence for the FFT circuits with the automaticallygenerated equivalence formula � de�ned as�kppl(I0::Ik�1; S0::Sk; O0::Ok�1)^�cmb(I0::Ii�1; O00::O0i�1)! Olag ::Ok�1 = O00::O0i�1where lag = 2N � 1, i = 2N and k = 2N + lag.A su�cient restriction � on the initial state of the pipelined FFT circuit isthat the n-bit counter is initialised to 0. The reason why this simple assertionis strong enough to prove the FFT implementations equivalent is that at re-initialisation the rest of the pipeline state is unimportant, new values have to beread for processing anyway. This is likely to hold for most pipelined implemen-tations of combinational circuits.The initialisation information � is always used by the Lava script to reducethe generated formulas as much as possible while they are produced. This reduc-tion computes the values of logical expressions whenever possible and propagatesthe resulting new information. As a consequence, the formulas that specify thebehaviour of the control logic inside the pipelined FFT are evaluated away andthe re-initialisation invariant in step 9 of Equiv! is proved by syntactic equality.The equivalence checking problem for the pipelined FFT is therefore reducedback to a proof of an equivalence formula that turns out to be amenable to nor-malisation with the theories used for the combinational equivalence checking.The complexity of the resulting proofs are indicated in table 2.FFT size Veri�cation time (s) Formula size (Bytes)4 0.05 122716 0.61 10 04564 22.26 162 862256 1361 2 797 617Table 2. Statistics for veri�cation of pipelined equivalence
5.4 Manual preparationApproximately two weeks was spent on studying the FFT implementations, de-vising signal processing combinators and writing circuit descriptions. The addi-tion of support in Lava's interpretations for complex numbers and the writing ofthe symbolic simulation interpretation with automatic formula reduction tookone week of work each.Finding the proof procedure was the creative step for the combinational FFTveri�cation. Two other theorem provers, Prover [St�a89] and Gandalf [Tam97],was tried before Otter. Prover lacked crucial arithmetic laws, and Gandalf didnot support the unidirectional rules that were needed to make the proofs scale up.A correct set of rewrite rules took some hours work by two users, Koen Claessen

and Tanel Tammet, who were unfamiliar with the FFT but knew Otter well.Any other applicable proof procedure would also have needed rewrite rules forthe twiddle factors, so we believe that this degree of manual work is unavoidable.Once the symbolic simulation interpretation with formula reduction was writ-ten, a �rst (more involved) pipeline proof script could be constructed in half anhour. This strategy was successful the �rst time it was tried; we later simpli�edthe heuristic to the presented form. The only non-reusable steps of the combina-tional and pipelined veri�cations were to choose Otter with rewrite rules as theproof procedure and to restrict the synchronisation counter state to the initialstate 0.6 Lessons learnedThe FFT circuits are representatives for a general class of circuits that computecomplex functions without using a large amount of boolean control logic. Ingeneral, a few guidelines for proofs of circuit equivalence for such circuits can bedrawn out of the FFT work:{ For each problem domain, it might be possible to �nd a small number ofgeneralised proof scripts that can be powerful enough for a particular classof problems to make proofs automatic in most cases. These scripts shouldbe parametrisable by proof options so that they not are too blunt to bereusable.{ As the proofs that have to be done when operations like arithmetic areinvolved are relatively complex, the prover's job must be simpli�ed as muchas possible. The use of automatic partial evaluation and formula reductioncan in some cases lessen the need for prover inferences drastically. A tool likeLava that supports analyses like simpli�cation of formulas by propositionalreasoning and cone-of-inuence analysis can help the designer simplify theproblem at hand.{ It is not always necessary to explore the state space of a design. Ordinaryinduction can sometimes avoid very complex or intractable computations,and make for uncomplicated proofs.{ Normal form rewriting is a powerful technique that can be implemented verye�ciently using modern rewrite engines. However, the use of unidirectionalrules is crucial to make the strategy applicable to larger circuits.7 Related workThe Radix-2 FFT algorithm has previously been veri�ed against the DFT usingthe ACL2 theorem prover [Gam98]. The level of abstraction in this veri�cationwas high and the proof thus required substantial user interaction. In contrast,we have aimed for fully automatic proofs, and veri�ed the hardware FFTs atthe netlist level. Our proofs are only for equivalence of �xed size circuits, butare not reliant on circuit regularity.

The pipeline proof principle bears some resemblance to the re�nement map-ping approach to pipelined microprocessor control veri�cation [BD94,Cyr93].However, as we are comparing a pipelined circuit against a combinational one,we cannot directly associate a single sequential step with the combinational im-plementation; we instead correlate whole frames. We also exploit the fact thatconstant lag pipelined circuits are targeted.There are alternatives to Otter as a proof procedure: the Stanford valid-ity checker decides quanti�er free �rst order logic with linear arithmetic anduninterpreted functions by boolean case splitting (backtracking), rewrites andcongruence closure [BDL96]. SVC has been used extensively in hardware veri-�cation, and is used as the decision procedure in the Burch and Dill approachto microprocessor veri�cation [BD94]. Multiway decision graphs are a variationon the ROBDD theme that accommodates abstract data types, uninterpretedfunction symbols and rewrite rules [ZSC+95]; this data structure has been usedto verify non-pipelined microprocessors and an ATM switch [TZS+96]. MDGsgive a canonical representation for a fragment of quanti�er free �rst-order for-mulas and support exploration of abstract state spaces (but do not guaranteeconvergence of �xpoint computations). As we have demonstrated, it is not al-ways necessary to do such expensive computations; induction and normalisingcan be both su�cient and e�cient.Both MDGs and SVC need the user to provide rewrite rules or a normaliserfor new theories. This means that the manual step of �nding a normal form fortwiddle factors is also necessary with these proof procedures.8 ConclusionsThis paper has shown how some FFT circuits have been veri�ed from within thehardware development tool Lava after the existing system was extended withcomplex numbers and a general purpose strategy for equivalence checking ofcombinational and �xed lag pipelined circuits. The veri�cation has been auto-matic in the sense that the only manual proof steps has been to select the proofprocedure, rewrite rules and the initial state variables to restrict. The proofs areat a relatively low level, which should give a high con�dence in the correctnessof the modelled circuits; the logical formulas has been generated by symbolicevaluation of the hardware descriptions. No part of the veri�cation has relied onthe speci�c way that the arithmetic operators are implemented, or the represen-tation of complex numbers. However, the proofs are not general in the size ofthe FFT; di�erent instances have to be proved separately.We have also presented an induction principle that exploits the problemstructure of equivalence checking between a pipelined circuit and a combinationalreference circuit, and contributed some suggestions for veri�cation of circuitsthat contain little control logic but do complicated computations expressed inabstract operations.

9 Future workLava is optimised for developing and verifying hardware. We pay for the strengthwe gain by limiting the problem domain, however, by presently being unable toreason internally about the proof strategies. Instead we have to go outside thesystem to a general purpose interactive theorem prover and do high level proofsthere. We would like to have Lava integrated with a proof system that wouldallow us to do this kind of reasoning.The counter examples that are produced by proof procedures are formattedand passed back to the user by Lava; unfortunately many �rst order logic theo-rem provers (including Otter) lack such capabilities. For veri�cation with normalform rewriting to be smooth, it must be easy to �nd a rewriting theory quickly.It is therefore imperative to have some tool that analyses the output of a failedproof and allows the user to deduce what rules are missing, or gives the usergood clues to why the two formulas are not equivalent. This is something thatshould (and will) be implemented in Lava as a proof analysis.AcknowledgementsThanks to Koen Claessen and Tanel Tammet for �nding the Otter rewritingtheory, and to Mary Sheeran and Byron Cook for careful readings of earlierdrafts.References[BCSS98] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hard-ware Design in Haskell. In Proceedings of the third International Conferenceon Functional Programming. ACM SIGPLAN, acm press, September 1998.[BD94] Jerry Burch and David Dill. Automatic Veri�cation of Microprocessor Con-trol. In Proceedings of the Computer Aided Veri�cation Conference, July1994.[BDL96] Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combi-nations of theories with equality. In Mandayam Srivas and Albert Camilleri,editors, Formal Methods In Computer-Aided Design, volume 1166 of LectureNotes in Computer Science, pages 187{201. Springer Verlag, November 1996.Palo Alto, California, November 6{8.[Cyr93] David Cyrluk. Microprocessor veri�cation in PVS. Technical Report SRI-CSL-93-12, SRI Computer Science Laboratory, December 1993.[Gam98] Ruben Gamboa. Mechanically verifying the correctness of the Fast FourierTransform in ACL2. In Third International Workshop on Formal Methodsfor Parallel Programming: Theory and Applications, 1998.[He95] Shousheng He. Concurrent VLSI Architectures for DFT Computing andAlgorithms for Multi-output Logic Decomposition. PhD thesis, Lund Instituteof Technology, 1995.[MW97] William W. McCune and L. Wos. Otter: The CADE-13 competition incar-nations. Journal of Automated Reasoning, 18(2):211{220, 1997.[PM92] John Proakis and Dimitris Manolakis. Digital Signal Processing. Macmillan,1992.

[St�a89] Gunnar St�almarck. A System for Determining Propositional Logic Theoremsby Applying Values and Rules to Triplets that are Generated from a Formula,1989. Swedish Patent No. 467 076 (approved 1992), U.S. Patent No. 5 276897 (1994), European Patent No. 0403 454 (1995).[Tam97] Tanel Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199{204,1997.[TZS+96] So��ene Tahar, Zijian Zhou, Xiaoyu Song, Eduard Cerny, and MichelLangevin. Formal veri�cation of an ATM switch fabric using Multiway Deci-sion Graphs. In IEEE Proceedings of Sixth Great Lakes Symposium on VLSI,March 1996.[VB98] Miroslav Velev and Randal Bryant. Bit-Level Abstraction in the Veri�cationof Pipelined Microprocessors by Correspondence Checking. In Formal Meth-ods in Computer-Aided Design, volume 1522 of LNCS, pages 18{35, PaloAlto, November 1998. Springer Verlag.[ZSC+95] Zijian Zhou, Xiaoyu Song, Fransisco Corella, Eduard Cerny, and MichelLangevin. Description and Veri�cation of RTL Designs Using Multiway De-cision Graphs. In Proceedings of the Conference on Hardware DescriptionLanguages and their applications, August 1995.A AppendixA.1 The Radix-2 FFT descriptionFigure 3 shows a size 16 Radix-2 FFT network, where merging arrows indicateaddition and constants under a wire indicate multiplication. The Lava descrip-tion of the size 2n Radix-2 FFT circuit follows the network structure closely,and is parametrised by n:radix2 n =bitRev n >-> compose [stage i | i <- [1..n]]wherestage i = raised (n-i) two (twid i >-> bflys (i-1))twid i = one (decmap (2^(i-1)) (wMult (2^i)))The FFT circuit is made up from the sequential composition of an initial bitreversal permutation network (not shown in the picture) and n circuit stages.Stage i is a column of 2n�i components that each contains a twiddle factormultiplication stage sequentially composed with a buttery network. Given thatx = 2i�1, a size i multiplication stage performs multiplications with W 02i :::W x�12ion the respective wires of one half of a bus, while passing the other half throughunchanged.More information on the signal processing building blocks and the descrip-tions of the combinational circuits can be found in [BCSS98].

W
0
2

W
0
2

W
0
2

W
0
2

W
0
2

W
0
2

W
0
2

-1

-1

-1

-1

-1

-1

-1

-1

x(15)
-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

x(0)

x(6)

x(9)

x(8)

x(4)

x(2)

x(1)

x(13)

x(11)

x(7)

x(3)

x(5)

x(10)

x(12)

x(14)

X(0)

X(6)

X(9)

X(15)

X(1)

X(2)

X(3)

X(4)

X(5)

X(7)

X(8)

X(10)

X(11)

X(12)

X(13)

X(14)

W
0
2

W4

W4
0

1

W4

W4

0

1

W4

W4

W4

W4

W16

W16

W16

W16

W16

W16

W16

W16

0

1

0

1

W8

W8

W8

W8

0

1

2

3

W8

W8

W8

W8

0

1

2

3

0

1

2

3

4

5

6

7Fig. 3. The structure of a size 16 Radix-2 FFT

