
Finding Bugs in an Alpha Microprocessor UsingSatis�ability SolversPer Bjesse1, Tim Leonard2, and Abdel Mokkedem21 Chalmers University of Technology, Swedenbjesse@cs.chalmers.se2 Compaq Computer Corporation, USAftim.leonard,abdel.mokkedemg@compaq.comAbstract. We describe the techniques we have used to search for bugs inthe memory subsystem of a next-generation Alpha microprocessor. Ourapproach is based on two model checking methods that use satis�ability(SAT) solvers rather than binary decision diagrams (BDDs).We show that the �rst method, bounded model checking, can reduce theveri�cation runtime from days to minutes on real, deep, microprocessorbugs when compared to a state-of-the-art BDD-based model checker.We also present experimental results showing that the second method, aversion of symbolic trajectory evaluation that uses SAT-solvers insteadof BDDs, can �nd as deep bugs, with even shorter runtimes. The tradeo�is that we have to spend more time writing speci�cations.Finally, we present our experiences with the two SAT-solvers that wehave used, and give guidelines for applying a combination of boundedmodel checking and symbolic trajectory evaluation to industrial strengthveri�cation.The bugs we have found are signi�cantly more complex than those pre-viously found with methods based on SAT-solvers.1 IntroductionGetting microprocessors right is a hard problem, with harsh punishments forfailure. With current design methods, hundreds to thousands of bugs must befound and removed during the design of a new processor, and there are heavyeconomic incentives to get most of them out before �rst silicon.Current designs are so complex that simulation-based methods are no longeradequate. Most companies in the industry, including at least AMD, Compaq, HP,IBM, Intel, Motorola, and Sun, have therefore investigated formal veri�cation.Their choices of methods, tools, and application areas have varied, as has theirlevel of success.One of the areas we have concentrated on at Compaq is property veri�cationfor our microprocessor designs. Among other things, we have investigated theuse of symbolic model checking [9] to �nd Register Transfer Level (RTL) bugs ina next-generation Alpha processor. Our goal in this work has been to �nd bugs,rather than to prove their absence, since there are many bugs to �nd in a designunder development.

Our initial experiments with symbolic model checking convinced us that thecapacity limits of many model checkers prevent us from �nding bugs cost ef-fectively. The best model checker we could �nd, an experimental version ofCadence SMV [10], needs several hours to days to check simple properties ofheavily reduced components. As a consequence, we have also looked at modelchecking using satis�ability (SAT) solvers [3, 2, 16]. These methods have shownreal promise, especially for �nding bugs, when compared to BDD-based modelcheckers like SMV.In this paper, we describe how we have applied two SAT-based veri�cationtechniques to �nd real bugs in the memory subsystem of the Alpha chip. The�rst technique, bounded model checking (BMC) [3], has previously been appliedto industrial veri�cation, but not for �nding bugs of length anywhere near whatwe will describe. The second of these techniques, symbolic trajectory evaluation(STE) [12], has previously not been used together with SAT-solvers at all.We compare the performance of SAT-based bounded model checking to state-of-the-art BDD-based model checking, and present results showing the useful-ness of SAT-based STE. Our experiences are very positive: the use of SAT-based methods has reduced the time for �nding certain bugs from days to a fewminutes. We also compare the performance, when �nding bugs in real designs,of the two SAT-solvers we have used: GRASP [15], and Prover Technology's
PROVER [14] proof engine. Finally, we present guidelines for applying a combi-nation of BMC and SAT-based STE to microprocessor bug �nding.Related Work. Bounded model checking [3] (BMC) was invented by Biere andcoworkers as a method for using SAT-solvers to do model checking. BMC haspreviously been applied to bug �nding for Power PC chips [4]. To our knowledge,BMC is the only SAT-based model checking method that has been used inrealistic microprocessor veri�cation.In the Power PC veri�cation, the authors did not model the environment ofthe designs under analysis. BMC quickly found short counterexamples to theproperties being veri�ed, but they were false failures due to illegal input se-quences. BMC did well at this compared to BDD-based model checking, but theresults said little about whether BMC could �nd real bugs, which are generallymuch deeper. We, on the other hand, present the results of searching for, and�nding, real, deep bugs. One of our important contributions is therefore that wedemonstrate that BMC together with cutting edge SAT-solvers has the capacityto �nd realistic bugs in industrial designs.Symbolic trajectory evaluation (STE) is a model checking method inventedby Seger and Bryant [12] that consists of an interesting mix of abstract inter-pretation and symbolic evaluation. STE is in industrial use, primarily for datapath and memory veri�cation, at companies including Intel [1] and Motorola.Up to now, STE has always been implemented using BDDs; the use of SAT-solvers to do STE has not been reported previously in the literature. Moreover,we apply symbolic trajectory evaluation to veri�cation at the synchronous gatelevel|a fairly high level of abstraction for STE, which has previously been usedpredominantly at the transistor level.

There are other ways of doing SAT-based model checking than the onesthat we discuss in this paper. We refer readers interested in these alternativeapproaches to [2, 16, 7, 13, 5].The paper is organised as follows. In Sections 3 and 4, we give brief introductionsto BMC and STE. We then describe the component that we have focused on, themerge bu�er, and the process we have used to analyse it. After that, we go on todescribe the actual use of the veri�cation tools and the results. Finally, we giveguidelines for using a combination of BMC and STE for heavy-duty industrialveri�cation.2 PreliminariesIn this paper, we will search for counterexamples to properties of synchronousgate-level hardware. Such circuits can be viewed as �nite transition systems,where the states are value assignments to a vector s = (s:0 ; : : : ; s:n) of booleanvariables called the system's state variables [6]. The transition system for a givencircuit can be represented as two propositional logic formulas [2]:Init(s) Initial states formulaTrans(s; s0) Transition relation formulaThe �rst formula, Init , is a formula that characterises the initial states byevaluating to true exactly for the assignments to the state variables that areinitial states. The second formula, Trans , evaluates to true for s and s0 preciselywhen there is a transition from the state assigned to s to the state assigned tos0. Our analyses take as inputs the formulas Init and Trans together with adescription of a property to check. Such a property might for example be \astore instruction to an IO address is never discarded." The aim of the analysesis then to generate a trace, if one exists, where an IO store is thrown away.In the case of BMC, we will speci�cally focus on detecting failures of safetyproperties. Informally, safety properties are properties of the form \in everyreachable state of the system, the property P holds."3 Bounded Model CheckingBounded model checking tries to �nd bugs in a system by constructing a formulathat is satis�able precisely if there exists a length N or shorter trace violating aproperty given by the user. The BMC procedure feeds this formula to an externalSAT-solver, and uses the returned assignment (if any) to extract a failure trace.The bound N is given by the user, and will a�ect both the size of the gener-ated formulas, and the length of the failure trace that can be detected. A negativeanswer from the SAT-solver for a given N does not mean that the whole system

is safe, only that there are no failure traces of length N or shorter. BMC is thusused to �nd bugs, rather than to prove their absence.We assume that the safety property we are interested in has been encodedas a propositional logic formula Prop(s) that will evaluate to true exactly forthe states ful�lling the property. Given the bound N , and the formulas Init(s),Trans(s; s0), and Prop(s), the BMC procedure constructs the following formula,which characterises failure traces of length N or shorter:Init(s1)^Trans(s1; s2) ^ : : : ^ Trans(sN�1; sN)^(:Prop(s1) _ : : : _ :Prop(sN))If the SAT-solver returns an assignment to the state variables in s1 : : : sN thatmakes this formula true, then there exists an initial state s1 in the system, fromwhich we can reach another state sk (k 2 f1 : : :Ng) where the property fails.The BMC procedure can thus extract a failure trace from the assignment.4 Symbolic Trajectory EvaluationA symbolic trajectory evaluator takes Trans(s; s0) as input together with a socalled trajectory assertion of the form Ant V Cons . The antecedent and con-sequent of the trajectory assertion, Ant and Cons , are lists of equal length, ineach of which the ith entry says something about the system's state variables attime i. Informally, a trajectory assertion will be true with respect to a systemif a trace of the system that agrees with the antecedent necessarily must agreewith the consequent. The objective of symbolic trajectory evaluation is to gen-erate a failure trace for the system that satis�es the antecedent, and violates theconsequent.As an example, assume that we have constructed a circuit whose state vari-ables s:a and s:b should contain the or and the and, respectively, of the currentand previous value of the state variable s:i. The following trajectory assertionspeci�es this property: [node s:i is x; node s:i is y]V[h�i; node s:a is x _ y and node s:b is x ^ y]Here h�i means \no requirements on the state variables", so the assertion can beread, \if we have a trace of the system where s:i contains the value x at sometime t, and s:i contains the value y at time t+ 1, then at time t+ 1 s:a and s:bcontains the logical or and the logical and of x and y, respectively."In order to generate a failure trace, the trajectory evaluator �rst computes aboolean expression ok over the user-introduced variables x and y. This expressionhas the property that it evaluates to true for the assignments to x and y forwhich the antecedent guarantees the consequent (and no others). A key element

of symbolic trajectory evaluation is that ok is constructed by symbolic reasoningin a four-valued logic. In addition to the two standard values True and False ,the four-valued logic contains the values X (unknown), and > (overspeci�ed).The value X is used to model unknown contents of state variables, and the value> is used to model the contents of state variables that are required to containtwo di�erent values at the same time.When ok has been computed, the evaluator uses an external SAT-solver tocheck whether there exists an assignment to x and y that makes ok evaluateto false. If there exists such an assignment, there is a trace of the circuit thatis consistent with the antecedent but violates the consequent. The trajectoryevaluator then instantiates x and y with the falsifying values, and constructs afailure trace that is given back to the user.5 The Merge Bu�erAlpha processors, like most state-of-the-art microprocessors, have a very hierar-chical structure. A processor is divided into a handful of so called boxes, eachresponsible for dealing with a particular aspect of instruction execution. Forexample, the IBox handles instruction fetch, and the MBox executes memory-reference instructions. Each box is further divided into a handful of parts thatwe will call subboxes.The subbox that is the focus of our attention in this paper is the merge bu�er,an important component of the MBox for a next-generation Alpha chip. We chosethe merge bu�er as it is one of the most complex subboxes in the processor. Ourhope is that if we can cost-e�ectively �nd bugs in this component, then we canuse the same methods on most other subboxes.The function of the merge bu�er is to receive requests to write into memory,and to reduce the traÆc on the memory bus by merging stores to the same physi-cal address. In order to do the merging correctly, the merge bu�er communicateswith four other subboxes: (1) the store queue, where store instructions are saveduntil they are written out of the merge bu�er; (2) the load queue, where loadinstructions are stored until they have received results from memory; (3) theCBox, which deals with the cache coherence protocol; and (4) the backend tagmodule.The merge bu�er is essentially a large bu�er with a very complex policy forreading in entries, merging stores, and writing out stores to the memory. It hasabout 14 400 latches, 400 primary inputs, and 15 pipeline stages. The pipelinehas complex feedback that prevents us from retiming away latches.6 Analysis cycleIn Figure 1 we show the analysis cycle that we have used to locate bugs in themerge bu�er.We start o� with the original RTL description of the circuit. As the full-sizemerge bu�er contains more than ten thousand latches|too much state to be

Symmetry
reduction

Transactor
writing Abstraction

Property
specification

Verification
Trace

inspection

property true

failure

false failure

real failure

circuit
description

Fig. 1. Our veri�cation
owfeasible to verify using standard model checking technology|we need to reducethe size of the model. The idea is to remove portions of the state in the circuitin ways that do not alter the circuit behaviour with respect to the properties ofinterest. The most important reductions are symmetry reductions [8], which weuse to reduce the number of bu�er entries, address bits per entry, data bytes perentry, and bits per data byte.We do not mind if some of our reductions do not preserve all possible proper-ties of the circuit, as long as we can �nd problems in the reduced circuit that alsoare present in the full size circuit. The reason for this is that we are interestedin �nding bugs, as opposed to proving correctness. We are thus permitted todo ad-hoc reductions that are formally incorrect, but that preserve most of theinteresting behaviour of the circuit.After the reductions, the merge bu�er has about 40 primary inputs. Whenthe merge bu�er is in use, these inputs will be connected to the four subboxeswith which the merge bu�er communicates. If we leave them unrestricted, theveri�cation will be done under the assumption that any inputs can occur at anytime. However, in order to function correctly, the merge bu�er relies on assump-tions about the behaviour of its environment. We therefore have to restrict theinput to the merge bu�er by adding transactor state machines that provide averi�cation environment that rules out input behaviours that could not arise inreal use.We then abstract the resulting circuit in two ways. First, we use an RTLcompiler to optimise the circuit by performing transformations like constantpropagation and common subexpression elimination. The reduced merge bu�ernow has about 1800 latches and 10 free primary inputs. We then do a �nal ab-straction step that removes redundant latches, and replaces groups of transparentlatches with standard
ip-
ops (a single transparent latch can not be modelledsynchronously, but we can often model clusters of transparent latches). The �nalmodel has about 600 state nodes in the cone of most properties.The end result of the reductions and abstractions is the model that we giveto the veri�cation tools. However, before we can do that, we need to write downthe property of interest in a format that the tool we want to use accepts. Giventhe model and the property, the veri�cation tool then either produces a failure

trace, or tells us that the property is true (which has little meaning as we haveperformed ad-hoc reductions).A lot of design knowledge is needed to decipher a failure trace; a property canfail for more than one reason. First of all, we might have made a speci�cationmistake that causes the tool to diagnose an intended behaviour of the system asa failure. In this case we need to modify the property. Second, the trace might bea trace that the real system could not exhibit, because it has arisen due to themerge bu�er's environment providing input signals that cannot occur in real-life.In this case we need to go back and modify the transactors so that we disallowthis behaviour, and re-abstract the resulting model. Third, we might have founda real bug.7 Veri�cationIn this section, we describe our experiences of applying BDD-based symbolicmodel checking, BMC, and STE to the merge bu�er. The areas of the mergebu�er that we target have previously been well explored with simulation-basedveri�cation.7.1 BDD-based Symbolic Model Checking
SMV was the �rst BDD-based tool that we evaluated that showed some promisefor checking non-trivial merge bu�er properties. (We have evaluated several.)However, most of the interesting merge-bu�er properties contain about 600latches in the cone of in
uence, and BDD-based model checking of state ma-chines containing more than a couple of hundred latches is highly non-trivial.In order to �nd bugs using SMV, we therefore have to decrease the size of thecone by setting a subset of the 10 free primary inputs to speci�c values duringthe run. These values restrict the part of the state space that we explore usingthe model checker.In order to get better performance out of SMV, we have ported it to the64-bit Alpha architecture. This allows us the bene�ts of performing the modelchecking runs on a high performance server with 8 GB of main memory. Tofurther improve SMVs capacity, we have also augmented the standard variablereordering heuristics with two special purpose tactics.In spite of the improvements to SMV, each property still takes several hoursto explore on the server. We have found many bugs this way, but it is slow.7.2 Bounded Model CheckingThe �rst alternative to BDD-based model checking that we have investigatedis bounded model checking, as implemented in the SAT-based model checkingworkbench FIXIT [2].One of the SAT-solvers that we wanted to use together with FIXIT, PROVER [14],was not available for the Alpha architecture when this work was done. We have

Failure length SMV
CAPTAIN PROVEBMC GRASPBMCsec sec sec25 62 280 85 2526 32 940 19 1934 11 290 586 27238 18 600 39 10153 54 360 1 995 [>10000 s]56 44 640 2 337 [>10000 s]76 27 130 619 6 150144 44 550 10 820 [>10000 s]Table 1. Comparison between bounded model checking and SMV.therefore done all of our BMC runs on a 32-bit PC. The performance of the BMCanalysis is still remarkable. Even though we are not using a high-performanceprocessor with many gigabytes of memory, we can �nd failures in a fraction ofthe time needed by SMV. In Table 1 we compare the runtimes of BMC, runningon a 450 MHz 32-bit PC, to SMV, running on a 700 MHz 64-bit Alpha.The �rst column of BMC runtimes is obtained using CAPTAIN PROVE, acommand-line tool from Prover Technology. CAPTAIN PROVE uses PROVER'sapplication programming interface [11] to search for models using strategies. Asimple such strategy, which we will refer to as the timed strategy, looks as follows:sat 1 time 3600.back level 5 [sat 1 time 30.].The timed strategy �rst does a preprocessing step called 1-saturation [14] for3600 seconds. This analysis tries to �nd information restricting the search spacewe have to traverse for a model. The 1-saturation is then followed by the actualsearch, backtracking. At every �fth level of the search tree, the SAT-solver isinstructed to do 30 seconds of additional 1-saturation.The use of strategies allows us to control the search for assignments. We usedi�erent choices of strategies for di�erent bounds N . When N is less than 40, weuse the default strategy of 1-saturation without a time limit followed by normalbacktracking. For N larger than 40, we use the timed strategy with di�erentvalues for the initial 1-saturation. For example, for length 60 traces we normallyneed 1000 seconds of initial saturation, whereas for traces over 100 cycles longwe use 10 000 or 20 000 seconds of initial saturation.As can be seen from Table 1, BMC using CAPTAIN PROVE detects the failuressigni�cantly faster than SMV. In some cases it reduces the runtime for �nding abug from a day to a couple of minutes. The lengths of failures that are detectedrange from 25 cycles up to well over a hundred cycles.The second column of BMC runtimes is obtained using GRASP [15], a high-capacity public domain SAT-solver. As can be seen in the table, CAPTAIN PROVEand GRASP both work well for short failures. For longer failures, CAPTAIN

PROVE outperforms GRASP. (Please note that the reason for the [>10000 s] tableentries is that GRASP automatically terminates after 10 000 seconds; we havenot cut it o�.)

7.3 SAT-based Symbolic Trajectory EvaluationThe second alternative to BDD-based model checking that we have investigatedis a SAT-based version of symbolic trajectory evaluation that we have imple-mented in FIXIT.The advantage of using STE instead of BMC is that we are not forced to givesymbolic values to each time-instance of a state variable. Instead we can chooseto give concrete values to some state variables, or leave them to contain X . Thispotentially permits us to do much deeper exploration of the state-space than wecan do using BMC, while preserving the short run times.However, in order to take full advantage of this increased
exibility, we haveto spend more time coming up with a good speci�cation that judiciously givesconcrete and symbolic values to the right variables.For example, if we do not give concrete or symbolic values to some of the statevariables, they are initialised to contain the unknown value X . This value oftenpropagates, since it may be impossible to draw conclusions about the outputsof a gate with an unknown input. We might also have forgotten to assign avalue to a primary input at an important time. When a property fails becauseof such underspeci�cation, we have to make the speci�cation more detailed byintroducing symbolic or concrete values. A given STE speci�cation will thusoften have to go through several iterations of revision.Failure length CAPTAIN PROVE GRASPsec sec77 7.7 33.377 7.7 34.2112 10.8 51.9123 11.7 51.9Table 2. Runtimes for detecting failures using symbolic trajectory evaluation.In Table 2, we present the runtimes needed to �nd four bugs in the mergebu�er using STE. The times to do the actual detections are short, but we had tospend a lot of time developing the speci�cations. Luckily, the turnaround timefor discovering that an assertion is underspeci�ed is a few seconds at most, whichmeans that the speci�cation work is very interactive.The table shows a clear di�erence between the performance of STE using
GRASP and CAPTAIN PROVE. However, the actual runtimes are very low inboth cases. For the purpose of using SAT-based STE to locate bugs in the mergebu�er, we can clearly make do with a public domain SAT solver.8 A Proposal for a MethodologyFrom the previous section, it is clear that BDD-based model checking, BMC, andSTE have very di�erent characteristics. Based on the experiences we have had

while locating design errors in the merge bu�er, we have the following suggestionfor a methodology:{ Start the analysis of a new subbox with bounded model checking.{ Initially test a new property with a small bound, so that the check onlytakes a few seconds. This will catch low-hanging fruit, and alert us to simpleproblems with inputs that are not properly constrained.{ Remove false counterexamples by modifying the transactors or the property,as appropriate.{ Start looking for long failures of the property. Choose a small set of bounds,ranging from medium long up to very challenging, and check each of themusing the timed CAPTAIN PROVE strategy. Use longer and longer saturationtimes.{ Use STE to quickly check that the problem is �xed whenever the designershave corrected a bug found using BMC. Also abstract the failure trace bymaking some of the inputs or control signals symbolic. This allows quickchecking for failures that are similar to the original failure.{ When the BMC checks start taking more than half an hour or so, startworking in parallel on using STE to �nd the bug.{ If neither BMC nor STE seems to �nd any failures, try SMV or move on toanother property.9 ConclusionsIn this paper, we have presented the techniques that we have used to �nd bugsin a crucial component of a microprocessor in design. Our approach is basedon bounded model checking and a SAT-based version of symbolic trajectoryevaluation that we have developed.Our experimental results demonstrate that it is possible for BMC to out-perform state-of-the-art BDD-based symbolic model checking by two orders ofmagnitude, even when we look for bugs in deeply pipelined industrial compo-nents. None of the bugs described here has been a false counterexample. As aresult, their complexity in terms of the length of minimum failure traces has beensigni�cantly larger than previously have been found using SAT-based techniques.We have had less time to evaluate the use of SAT-based STE, but it seemsclear that it is a very attractive bug-�nding method. We have used STE to �ndbugs as deep as the ones we have been able to �nd using BMC, with negligibleruntimes. However, this does not come for free; we have decreased the tool'sruntime by spending more time developing speci�cations.We have also presented a comparison of the performance of CAPTAIN PROVEand GRASP for BMC and STE, and suggested a methodology for SAT-basedindustrial bug �nding.We believe that the approach we have presented here can be cost e�ective,and that the techniques we have used will become vital instruments in the stan-dard veri�cation toolbox. During the two months when the work that is pre-sented in this paper was done, we improved the SAT-based framework FIXIT

signi�cantly and removed many bottlenecks that we had not encountered onacademic examples. The dramatic decrease in runtimes that we achieved in thisshort time makes us believe that there is a large potential for further improve-ment.Acknowledgements. Many thanks to Gunnar Andersson, Luis Baptista, ArneBor�alv, and Jo~ao Marques Silva, who gave advice on running the SAT-solvers.We would also like to thank Gabriel Bischo�, John Matthews and Mary Sheeranfor their useful comments on earlier drafts of this paper. Finally, Per Bjessethanks Compaq's Alpha Development group for hosting him during the autumnof 2000.References1. M. Aagaard, R. B. Jones, T. F. Melham, J. W. O'Leary, and C.-J. H. Seger. Amethodology for large-scale hardware veri�cation. In Formal Methods in ComputerAided Design, November 2000.2. P. A. Abdulla, P. Bjesse, and N. E�en. Symbolic reachability analysis based onSAT-solvers. In Proc. TACAS '00, 9th Int. Conf. on Tools and Algorithms for theConstruction and Analysis of Systems, 2000.3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking with-out BDDs. In Proc. TACAS '99, 8th Int. Conf. on Tools and Algorithms for theConstruction and Analysis of Systems, 1999.4. A. Biere, E. M. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties of aPowerPC[tm] microprocessor using symbolic model checking without BDDs. InProc. 11th Int. Conf. on Computer Aided Veri�cation, 1999.5. P. Bjesse and K. Claessen. SAT-based veri�cation without state space traversal.In Formal Methods in Computer Aided Design, November 2000.6. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, December1999.7. A. Gupta, Z. Yang, and P. Ashar. SAT-based image computation with applicationin reachability analysis for veri�cation. In Formal Methods in Computer AidedDesign, November 2000.8. C. N. Ip and D. Dill. Better veri�cation through symmetry. Formal Methods inSystem Design, 9(1/2):41{75, August 1996.9. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.10. K. L. McMillan. The SMV language. Technical report, Cadence Berkeley Labs,1999.11. Prover Technology AB. Prover 4.0 Application Programming Reference Manual,2000. PPI-01-ARM-1.12. C.-J. H. Seger and R. E. Bryant. Formal veri�cation by symbolic evaluation ofpartially ordered trajectories. Formal Methods in System Design, 6(2):147{190,March 1995.13. M. Sheeran, S. Singh, and G. St�almarck. Checking safety properties using inductionand a SAT-solver. In Formal Methods in Computer Aided Design, November 2000.14. M. Sheeran and G. St�almarck. A tutorial on St�almarck's proof procedure forpropositional logic. Formal Methods in System Design, 16(1):23{58, January 2000.15. J. P. M. Silva. Search algorithms for satis�ability problems in combinational switch-ing circuits. PhD thesis, EECS Department, University of Michigan, May 1995.

16. P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining decision diagramsand SAT procedures for eÆcient symbolic model checking. In Proc. 12th Int. Conf.on Computer Aided Veri�cation, 2000.

